Optimizing Goods Placement in Logistics Transportation using Machine Learning Algorithms based on Delivery Data

Authors

  • Moh Husnus Syawab Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Yunifa Miftachul Arief Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Fresy Nugroho Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Ririen Kusumawati Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Cahyo Crysdian Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
  • Agung Teguh Wibowo Almais Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia

DOI:

https://doi.org/10.31961/eltikom.v8i2.1321

Keywords:

Classification, Goods Placement, K-Nearest Neighbor (KNN), Support Vector Machine (SVM)

Abstract

This study addresses the challenge of predicting the optimal placement of goods for expeditionary transportation. Efficient placement is crucial to ensure that goods are transported in a manner that maximizes space and minimizes the risk of damage. This study aims to develop a prediction system using the K-Nearest Neighbor (KNN) method, which is based on expert data from expedition vehicles. To evaluate the effectiveness of the KNN method, the researcher compared it with the Support Vector Machine (SVM) method. By doing so, they sought to determine which method delivers more accurate predictions for the optimal placement of goods. The test results revealed that the KNN method outperformed SVM, achieving a higher accuracy of 95.97% compared to SVM's 92.85%. Additionally, KNN demonstrated a lower Root Mean Square Error (RMSE) of 0.18, indicating more precise predictions, while SVM had an RMSE of 0.271. These findings suggest that KNN is the more effective method for predicting the optimal placement of goods in expeditionary transportation.

Downloads

Download data is not yet available.

References

V. Islami and R. Oktaviani, “Analisis sistem pengadaan barang dalam rangka sistem pengendalian intern (Studi kasus: PT lintas nusantara perdana),” J. Adm. Bisnis, vol. 2, no. 1, pp. 10–18, 2022.

N. SUNGMALA and A. VERAWAT, “The impact of employee engagement on employee performance: A case study of multinational corporations in Thailand,” J. Asian Financ. Econ. Bus., vol. 8, no. 5, pp. 1091–1097, 2021.

A. P. Wulandari, A. A. Salsabila, K. Cahyani, T. S. Nurazizah, and Z. Ulfiah, “Pentingnya media pembelajaran dalam proses belajar mengajar,” J. Educ., vol. 5, no. 2, pp. 3928–3936, 2023.

J. Nie, “Location decision of logistics distribution centers based on artificial neural network,” NeuroQuantology, vol. 16, no. 6, 2018.

C. Srinivas, N. S. Yadav, A. S. Pushkar, R. Somashekar, and K. R. Sundeep, “Students placement prediction using machine learning,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 5, pp. 2771–2774, 2020.

A. S. Sharma, S. Prince, S. Kapoor, and K. Kumar, “PPS—Placement prediction system using logistic regression,” in 2014 IEEE International Conference on MOOC, Innovation and Technology in Education (MITE), IEEE, 2014, pp. 337–341.

T. P. McDonald, J. Poertner, and G. Harris, “Predicting placement in foster care: A comparison of logistic regression and neural network analysis,” J. Soc. Serv. Res., vol. 28, no. 2, pp. 1–20, 2001.

G.-F. Fan, Y.-H. Guo, J.-M. Zheng, and W.-C. Hong, “Application of the weighted k-nearest neighbor algorithm for short-term load forecasting,” Energies, vol. 12, no. 5, p. 916, 2019.

Y. Dong, X. Ma, and T. Fu, “Electrical load forecasting: A deep learning approach based on K-nearest neighbors,” Appl. Soft Comput., vol. 99, p. 106900, 2021.

M. Atanasovski, M. Kostov, B. Arapinoski, and M. Spirovski, “K-nearest neighbor regression for forecasting electricity demand,” in 2020 55th international scientific conference on information, communication and energy systems and technologies (ICEST), IEEE, 2020, pp. 110–113.

H. Fawzy, E. H. A. Rady, and A. M. Abdel Fattah, “Comparison between support vector machines and k-nearest neighbor for time series forecasting,” J. Math. Comput. Sci., vol. 10, no. 6, pp. 2342–2359, 2020.

A. Giri, M. V. V Bhagavath, B. Pruthvi, and N. Dubey, “A placement prediction system using k-nearest neighbors classifier,” in 2016 second international conference on cognitive computing and information processing (CCIP), IEEE, 2016, pp. 1–4.

S. L. Karri, L. C. De Silva, D. T. C. Lai, and S. Y. Yong, “Classification and prediction of driving behaviour at a traffic intersection using SVM and KNN,” SN Comput. Sci., vol. 2, pp. 1–11, 2021.

K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief review of nearest neighbor algorithm for learning and classification,” in 2019 international conference on intelligent computing and control systems (ICCS), IEEE, 2019, pp. 1255–1260.

E. Y. Boateng, J. Otoo, and D. A. Abaye, “Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review,” J. Data Anal. Inf. Process., vol. 8, no. 4, pp. 341–357, 2020.

R. Andrian, M. A. Naufal, B. Hermanto, A. Junaidi, and F. R. Lumbanraja, “K-Nearest Neighbor (k-NN) Classification for Recognition of the Batik Lampung Motifs,” in Journal of Physics: Conference Series, IOP Publishing, 2019, p. 12061.

J. Cao, D. Wang, Z. Qu, H. Sun, B. Li, and C.-L. Chen, “An improved network traffic classification model based on a support vector machine,” Symmetry (Basel)., vol. 12, no. 2, p. 301, 2020.

S. Renukalatha and K. V Suresh, “Classification of glaucoma using simplified-multiclass support vector machine,” Biomed. Eng. Appl. Basis Commun., vol. 31, no. 05, p. 1950039, 2019.

S. Mohankumar, “Analysis of different wavelets for brain image classification using support vector machine,” Int. J. Adv. Signal Image Sci., vol. 2, no. 1, pp. 1–4, 2016.

I. N. Yulita and S. Saori, “Human activities and postural transitions classification using support vector machine and k-nearest neighbor methods,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2019, p. 12025.

O. Altay, M. Ulas, and K. E. Alyamac, “Prediction of the fresh performance of steel fiber reinforced self-compacting concrete using quadratic SVM and weighted KNN models,” IEEE Access, vol. 8, pp. 92647–92658, 2020.

A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-NN dengan Euclidean Distance untuk prediksi hasil penggergajian kayu sengon,” Transm. J. Ilm. Tek. Elektro, vol. 22, no. 4, pp. 123–129, 2020.

S. R. K. W. T. Rustandi, D. Suhaedi, and Y. Pemanasari, “Pemetaan Hyperplane Pada Support Vector Machine,” in Bandung Conference Series: Mathematics, 2023, pp. 109–119.

M. Mahyudin, I. Suprayogi, and T. Trimaijon, “Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (ZST)(Studi Kasus: Sub DAS Siak Hulu).” Riau University, 2014.

Downloads

Published

27-12-2024

How to Cite

[1]
Syawab, M.H. et al. 2024. Optimizing Goods Placement in Logistics Transportation using Machine Learning Algorithms based on Delivery Data. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 8, 2 (Dec. 2024), 201–209. DOI:https://doi.org/10.31961/eltikom.v8i2.1321.

Issue

Section

Articles