Pengujian Optimization dan Non-Optimization Query Metode Topsis untuk Menentukan Tingkat Kerusakan Sektor Bencana Alam

Authors

  • Annisa Heparyanti Safitri Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
  • Agung Teguh Wibowo Almais
  • A'la Syauqi Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
  • Roro Inda Melani Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia

DOI:

https://doi.org/10.31961/eltikom.v6i1.532

Keywords:

Query Optimization, Response time, TOPSIS

Abstract

The huge volume of data from the Disaster Management Planning and Control (P3B) surveyor team creates wide and varied problems that can consume system resources and processing time that is relatively long. There-fore, this study proposes a solution by performing query optimization on the TOPSIS method which is implemented in a decision support system to determine the level of post-disaster damage. Based on 3 trials with different amounts of data, the 1st trial used 114 data, the 2nd trial used 228 data and the 3rd trial used 334 data. In addition, for each trial, the response time measurement was repeated 3 times, so that the average response time of each step of the TOPSIS method was obtained. It was found that the results of the ranking stage using query optimization were 0.00076 faster than the non-optimization query. So, it can be concluded that the response time obtained by query optimization at each step of the TOPSIS method in the post-natural disaster sector damage decision support system is smaller than the response time in non-optimization queries.

Downloads

Download data is not yet available.

References

M. S. Yana, L. Setiawan, E. M. Ulfa, and A. Rusyana, “Penerapan Metode K-Means dalam Pengelompokan Wilayah Menurut Intensitas Kejadian Bencana Alam di Indonesia Tahun 2013-2018,” J. Data Anal., vol. 1, no. 2, pp. 93–102, 2018, doi: 10.24815/jda.v1i2.12584.
M. Gading Sadewo, A. Perdana Windarto, and A. Wanto, “KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) Penerapan Algoritma Clustering Dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/ Mitigasi Bencana Alam Menurut Provinsi Dengan K-Means,” vol. 2, pp. 311–319, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/komik.
F. Mahdia, Faya; Noviyanto, “Pemanfaatan Google Maps Api Untuk Pembangunan Sistem Informasi Manajemen Bantuan Logistik Pasca Bencana Alam Berbasis Mobile Web ( Studi Kasus : Badan Penanggulangan Bencana Daerah Kota Yogyakarta ),” J. Sarj. Tek. Inform., vol. 1, no. 1, pp. 162–171, 2013, doi: 10.12928/jstie.v1i1.2521.
A. Bachriwindi, E. K. Putra, U. M. Munawaroh, and A. T. W. Almais, “Implementation of Web-Based Weighted Product Use Decision Support System to Determine the Post-Disaster Damage and Loss,” J. Phys. Conf. Ser., vol. 1413, no. 1, 2019, doi: 10.1088/1742-6596/1413/1/012019.
A. T. Wibowo Almais, M. Sarosa, and M. A. Muslim, “Implementation Of Multi Experts Multi Criteria Decision Making For Rehabilitation And Reconstruction Action After A Disaster,” Matics, vol. 8, no. 1, p. 27, 2016, doi: 10.18860/mat.v8i1.3480.
M. Sharma, G. Singh, and R. Singh, “Clinical decision support system query optimizer using hybrid Firefly and controlled Genetic Algorithm,” J. King Saud Univ. - Comput. Inf. Sci., 2018, doi: 10.1016/j.jksuci.2018.06.007.
K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate query processing using wavelets,” VLDB J., vol. 10, no. 2–3, pp. 199–223, 2001, doi: 10.1007/s007780100049.
M. Sharma, G. Singh, and R. Singh, “Design and analysis of stochastic DSS query optimizers in a distributed database system,” Egypt. Informatics J., vol. 17, no. 2, pp. 161–173, 2016, doi: 10.1016/j.eij.2015.10.003.
T. Kuo, “A modified TOPSIS with a different ranking index,” Eur. J. Oper. Res., vol. 260, no. 1, pp. 152–160, 2017, doi: 10.1016/j.ejor.2016.11.052.
P. Noviyanti, A. Deolika, S. Hartinah, C. A. Haris, T. Maryana, and N. D. Sari, “Perbandingan Query Response time pada Model Query View dan Cross Product,” e-Jurnal JUSITI (Jurnal Sist. Inf. dan Teknol. Informasi), vol. 7–2, no. 2, pp. 131–141, 2018, doi: 10.36774/jusiti.v7i2.248.
P. K. Kwok and H. Y. K. Lau, “Hotel selection using a modified TOPSIS-based decision support algorithm,” Decis. Support Syst., vol. 120, pp. 95–105, 2019, doi: 10.1016/j.dss.2019.02.004.
I. Warman and R. Ramdaniansyah, “Analisis Perbandingan Kinerja Query Database Management System (DBMS) Antara MySQL 5.7.16 Dan MariaDB 10.1,” J. Teknoif, vol. 6, no. 1, pp. 32–41, 2018, doi: 10.21063/jtif.2018.v6.1.32-41.
A. Fauzy, A. Hasani, A. A. Apriyanda, N. Falah, D. Aulia, and A. Sugiarto, “Pembuatan Website : MySQL Database,” 2000.
G. L. Ginting, P. N. Dian, and Pristiwanto., “Perancangan Aplikasi Pendeteksi Kesalahan Perintah SQL Query Menggunakan Algoritma Knuth Morris Pratt,” J. Ris. Komput. ISSN 2407-389X, vol. 5, no. 4, pp. 377–381, 2018, [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/jurikom.
M. S. Manahan Siallagan, Mira Kania Sabariah, “Optimasi Query Database Menggunakan Algoritma Genetik,” Issn 1907-5022 Optimasi, vol. 2008, no. Snati, 2008.

Downloads

Published

15-05-2022

How to Cite

[1]
Safitri, A.H. et al. 2022. Pengujian Optimization dan Non-Optimization Query Metode Topsis untuk Menentukan Tingkat Kerusakan Sektor Bencana Alam. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 6, 1 (May 2022), 89–99. DOI:https://doi.org/10.31961/eltikom.v6i1.532.

Issue

Section

Articles