Radial Basis Function Model for Obesity Classification Based on Lifestyle and Physical Condition

Authors

  • Farhan Radhiansyah Razak Universitas Ahmad Dahlan, Indonesia
  • Muhammad Kunta Biddinika Universitas Ahmad Dahlan, Indonesia
  • Herman Yuliansyah Universitas Ahmad Dahlan, Indonesia

DOI:

https://doi.org/10.31961/eltikom.v8i2.1347

Keywords:

Obesity, Classification, SVM, Naive Bayes, KNN

Abstract

Obesity is a chronic condition affecting millions worldwide, influenced by genetic predispositions, environmental factors, lifestyle habits, and excessive caloric intake surpassing energy expenditure. widespread prevalence, existing studies lack a comprehensive exploration of classification models that effectively address the complex interplay between lifestyle and physical attributes. This study tackles the absence of an optimal machine learning model for accurately classifying obesity based on these multifaceted factors. To address this gap, the study evaluates the performance of three machine learning algorithms: Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel, Naïve Bayes, and K-Nearest Neighbor (KNN). The primary objectives are to identify the most accurate classification approach, analyze the strengths of these algorithms, and highlight the importance of lifestyle and physical attributes in obesity prediction. Experimental findings show that SVM with RBF kernel achieves the highest accuracy at 89%, surpassing the performance of the other models. This study advances the field of obesity classification by offering a detailed comparative analysis of machine learning algorithms and underscoring the critical role of integrating lifestyle and physical factors into predictive modeling.

Downloads

Download data is not yet available.

References

MD. Jonathan Q. Purnell, Definitions, Classification, and Epidemiology Obesity. National Library of Medicine, 2023.

N. Jamal et al., “Safety, efficacy, and mechanism of action of herbs used for obesity management: A thematic review,” Obesity Med-icine, vol. 32, Jun. 2022

O. A. Basit, E. Noorhasanah, R. Kirana, A. Rachmadi, and P. Kemenkes Banjarmasin, “Hubungan Aktivitas Fisik dengan status Gizi pada Anak Sekolah selama masa pandemi Covid-19 di SDN Karang Mekar 9 Kota Banjarmasin,” Jurnal Inovasi Penelitian, vol. 3, no. 1, 2022.

U. R. Wulandari and A. Khalifatunnisak, “Faktor Lingkungan dan Genetik penyebab Kejadian Overweight pada Balita Usia 3-5 Ta-hun di Kota Kediri,” Journal for Quality in Women’s Health, vol. 2, no. 2, pp. 55–58, Aug. 2019.

J. V. Wie and M. Siddik, “Penerapan Metode Naive Bayes dalam Mengkalsifikasi TIngkaat Obesitas pada Pria,” JOISIE Journal Of Information System And Informatics Engineering, vol. 6, pp. 69–77, 2022.

J. Aaseth, S. Ellefsen, U. Alehagen, T. M. Sundfør, and J. Alexander, “Diets and drugs for weight loss and health in obesity,” Biomed Pharmacother, Aug. 2021.

N. Nevita and P. Arum, “The Incidence of Obesity in Adolencents in Antartika High School in Sidoardjo,” Jurnal Keperawatan, vol. 16, no. 2, Aug. 2022.

A. La Cruz, E. Severeyn, M. Huerta, and S. Wong, “Support vector machine technique as classifier of impaired body fat percentage,” IOS Press, vol. 340, pp. 175–182, Oct. 2021.

Joseph C. Wong, Sheila O’Neill, Belinda R. Beck, Mark R. Forwood, and Soo Keat Khoo, “Comparison of obesity and metabolic syn-drome prevalence using fat mass index, body mass index and percentage body fat.,” Jan. 2021.

World Health Organization, “Obesity and Overweight,” Mar. 2024.

Sumarni and E. Yane Bangkele, “Persepsi Orang Tua, Guru dan Tenaga Kesehatan tentang Obesitas,” Healthy Tadulako Journal, vol. 9, no. 1, 2023.

Hanouf Al Hammadi and John J Reilly, “Classification Accuracy of Body Mass Index for Excessive Body Fatness in Kuwaiti Adoles-cent Girls and Young Adult Women Diabetes, Metabolic Syndrome and Obesity,” 2020.

Harliana and Anggraini Dewi, “Penerapan Algoritma Naïve Bayes Pada Klasifikasi Status Gizi Balita di Posyandu Desa Kalitengah (Harliana, Dewi Anggraini),” Jurnal Informatika Komputer, Bisnis dan Manajemen, vol. 21, no. 2, pp. 38–45, 2023.

T. Hidayatulloh and L. Yusuf, “Klasifikasi Tipe Berat Tubuh Menggunakan Metode Support Vector Machine,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 71–77, Aug. 2023.

E. De-La-Hoz-Correa, F. E. Mendoza-Palechor, A. De-La-Hoz-Manotas, R. C. Morales-Ortega, and S. H. B. Adriana, “Obesity level estimation software based on decision trees,” Journal of Computer Science, vol. 15, no. 1, pp. 67–77, 2019.

P. Wirawan, N. Sari, D. A. Lantana, and A. Suryaningtyas, “Komparasi Metode Knn, Naive Bayes, Decision Tree, Ensemble, Linear Regression Terhadap Analisis Performa Pelajar Sma,” Journal Of Social Science Research, vol. 3, no. 2, pp. 13880–13892, 2023.

A. I. Putri et al., “Implementation of K-Nearest Neighbors, Naïve Bayes Classifier, Support Vector Machine and Decision Tree Algo-rithms for Obesity Risk Prediction,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 26–33, Apr. 2024.

S. Y. Sibi and A. R. Widiarti, “Klasifikasi Tingkat Obesitas Mempergunakan Algoritma KNN,” Seminar Nasional CORISINDO, Aug. 2022.

S. Septiyanti and S. Seniwati, “Obesity and Central Obesity in Indonesian Urban Communities,” Jurnal Ilmiah Kesehatan (JIKA), vol. 2, no. 3, pp. 118–127, Dec. 2020.

C. B. Weir and A. Jan, BMI Classification Percentile and Cut Off Points. National Library of Medicine, 2023.

Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. SY, and M. A. Pramuditho, “Optimasi Convolutional Neural Net-work dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomu-nikasi, & Teknik Elektronika, vol. 10, no. 3, p. 728, Jul. 2022.

B. V. Jayadi, T. Handhayani, Manatap, and D. Lauro, “Perbandingan KNN dan SVM untuk Klasifikasi Kualitas Udara di Jakarta,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 11, no. 2, 2023.

B. Sugara and A. Subekti, “Penerapan Support Vector Machine pada Small Dataset untuk Deteksi dini Gangguan Autisme,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, Sep. 2019.

A. Wulandari, A. Mulya, T. Dermawan, R. R. Haiban, A. Tatamara, and H. D. Khalifah, “Application of Artificial Neural Network, K-Nearest Neighbor and Naive Bayes Algorithms for Classification of Obesity Risk Cardiovascular Disease,” IJATIS: Indonesian Journal of Applied Technology and Innovation Science, vol. 1, no. 1, pp. 9–15, Jan. 2024.

I. Widhi Saputro and B. Wulan Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa Naïve Bayes Algo-rithm Performance Test for Student Study Prediction,” Citec Journal, vol. 6, no. 1, 2019.

Downloads

Published

27-12-2024

How to Cite

[1]
Razak, F.R. et al. 2024. Radial Basis Function Model for Obesity Classification Based on Lifestyle and Physical Condition. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 8, 2 (Dec. 2024), 192–200. DOI:https://doi.org/10.31961/eltikom.v8i2.1347.

Issue

Section

Articles