Analisis Sentimen Sistem Ganjil Genap Kota Bogor

  • Hilda Rachmi Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Suparni Suparni Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Ahmad Al Kaafi Fakultas Teknik dan Informatika, Universitas Bina Sarana Informatika, Jakarta, Indonesia
Keywords: analisis sentimen, klasifikasi, sistem ganjil genap

Abstract

To reduce the crowds during the COVID-19 pandemic, the Bogor City Government implemented an odd-even system for all vehicles in the city of Bogor at the end of the operation. Since the implementation of this policy, many opinions have been conveyed through social media. An analysis is needed to find out how effective the policy is based on public opinion. For this reason, an analysis of the sentiment application of the odd-even system for vehicles in the city of Bogor was carried out during the pandemic. The purpose of this study is to determine the accuracy, recall, and precision and calculate the amount of emotion obtained from sentiment analysis by using several algorithms for the application and application of selection features that can provide sentiment information related to the effectiveness of the software system in Bogor City. The research stages started from the selection of data, pre-processing, implementation, validation, and evaluation. Based on this research, it can be found that the Support Vector Machine algorithm with the application of Particle Swarm Optimization shows the results of the greatest assessment on the system sentiment analysis test in the city of Bogor during the pandemic with a value of 73.07%. In total, the sentiment of implementing the odd-even system to declare in Bogor City shows an expression of the joy of 45.45%.

Downloads

Download data is not yet available.

References

BPS Kota Bogor, “Statistik Kesejahteraan Rakyat Kota Bogor 2020,” 2020. [Online]. Available: https://bandungkota.bps.go.id/news/2020/01/07/15/sensus-penduduk-2020--sensus-era-digital---.html.
A. P. Natasuwarna, “Seleksi Fitur Support Vector Machine pada Analisis Sentimen Keberlanjutan Pembelajaran Daring,” Techno.Com, vol. 19, no. 4, pp. 437–448, 2020, doi: 10.33633/tc.v19i4.4044.
H. S. Utama, D. Rosiyadi, B. S. Prakoso, and D. Ariadarma, “Analisis Sentimen Sistem Ganjil Genap di Tol Bekasi Menggunakan Algoritma Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 243–250, 2019, doi: 10.29207/resti.v3i2.1050.
N. Y. A. Faradhillah, R. P. Kusumawardani, and I. Hafidz, “Eksperimen Sistem Klasifikasi Analisa Sentimen Twitter pada Akun Resmi Pemerintah Kota Surabaya Berbasis Pembelajaran Mesin,” Pros. Semin. Nas. Sist. Inf. Indones. 2016, pp. 15–24, 2016.
A. P. Wibowo and E. Jumiati, “Sentiment Analysis Masyarakat Pekalongan Terhadap Pembangunan Jalan Tol Pemalang-Batang Di Media Sosial,” IC-Tech, vol. XIII, no. 0285, pp. 42–48, 2018.
Y. S. Mahardhika and E. Zuliarso, “Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes,” Pros. SINTAK 2018, no. 2015, pp. 409–413, 2018.
A. Taufik, “Komparasi Algoritma Text Mining Untuk Klasifikasi Review Hotel,” J. Tek. Komput., vol. IV, no. 2, 2018, doi: 10.31294/jtk.v4i2.3461.
X. Deng, Y. Li, J. Weng, and J. Zhang, “Feature Selection for Text Classification: A review,” Muiltimed Tools Appl, pp. 257–276, 2018, doi: 10.1007/s11042-018-6083-5.
R. Y. Yanis, “Sentiment Analysis of Bpjs Kesehatan Services To Smk Eklesia and Bina Insani Jailolo Teachers,” J. Terap. Teknol. Inf., vol. 2, no. 2, pp. 25–34, 2018, doi: 10.21460/jutei.2018.22.105.
M. Kusmira, “Analisis Sentimen Registrasi Ulang Kartu SIM Pada Twitter Menggunakan Algoritma SVM Dan K-NN,” Inti Nusa Mandiri, vol. 14, no. 1, pp. 133–138, 2019.
O. Somantri and D. Apriliani, “Support Vector Machine Berbasis Feature Selection Untuk Sentiment Analysis Kepuasan Pelanggan Terhadap Pelayanan Warung dan Restoran Kuliner Kota Tegal,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 5, p. 537, 2018, doi: 10.25126/jtiik.201855867.
A. Salam, J. Zeniarja, and R. S. U. Khasanah, “Analisis Sentimen Data Komentar Sosial Media Facebook Dengan K-Nearest Neighbor (Studi Kasus Pada Akun Jasa Ekspedisi Barang J&T Ekpress Indonesia),” in Prosiding SINTAK, 2018, pp. 480–486.
N. Ruhyana, “Analisis Sentimen Terhadap Penerapan Sistem Plat Nomor Ganjil / Genap Pada Twitter Dengan Metode Klasifikasi Naive Bayes,” J. IKRA-ITH Inform., vol. 3, no. 1, pp. 94–99, 2019.
R. Aryanti, A. Saepudin, E. Fitriani, R. Permana, and D. F. Saefudin, “Komparasi Algoritma Naive Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Pengguna Busway,” J. Tek. Komput. AMIK BSI, vol. V, no. 2, pp. 227–234, 2019, doi: 10.31294/jtk.v4i2.
A. Faisal, Y. Alkhalifi, A. Rifai, and W. Gata, “Analisis Sentimen Dewan Perwakilan Rakyat Dengan Algoritma Klasifikasi Berbasis Particle Swarm Optimization,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, p. 61, 2020, doi: 10.31328/jointecs.v5i2.1362.
E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” J. Khatulistiwa Inform., vol. 7, no. 1, pp. 29–36, 2019, doi: 10.31294/jki.v7i1.1.
S. Yordanova and D. Kabakchieva, “Sentiment Classification of Hotel Reviews in Social Media with Decision Tree Learning,” Int. J. Comput. Appl., vol. 158, no. August, p. 7, 2017, doi: 10.5120/ijca2017912806.
A. Annisa Raudya Wibowo, Nuke Nidya, Aisyah Firdausi Rahma, “Analisis Sentimen Hashtag ‘Dirumahaja’ Saat Pandemi Covid-19 Di Indonesia Menggunakan Nlp,” Jurnal Informatika Dan Sistem Informasi (JIFoSI), vol. 1, no. 2, pp. 343–353, 2020, [Online]. Available: http://jifosi.upnjatim.ac.id/index.php/jifosi/article/view/239.
Published
2021-09-10
Section
Articles
Abstract viewed = 119 times
PDF downloaded = 138 times