Optimal Power Flow using An Optimally Tuned Pattern Search Algorithm
DOI:
https://doi.org/10.31961/eltikom.v8i2.1290Keywords:
Optimal power flow, optimally tuned pattern search, power system optimizationAbstract
Optimal power flow (OPF) is a critical optimization application in power system planning and operation. Numerous studies employ metaheuristic techniques to address OPF problems of varying complexity. However, these techniques often suffer from slow convergence due to their dependence on the quality of initial solutions. To overcome this limitation, initial solutions must be optimally tuned to achieve good outcomes with faster convergence. This paper proposes an optimally tuned pattern search (OPS) algorithm to solve OPF problems in medium and large power systems. The tuning process, performed using the classical interior point method (IPM), provides optimal initial control variable values for the standard pattern search (PS) algorithm. The proposed technique is applied to three test systems: IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems. The OPF problem is formulated to minimize four objectives: total active power loss, total generator fuel cost, total generator emission, and total deviation in load bus voltage magnitude. The performance of the OPS algorithm is evaluated based on objective function values and computation times and is compared with IPM and two popular metaheuristic techniques, particle swarm optimization (PSO) and genetic algorithm (GA). Results indicate that the OPS algorithm's performance varies across test systems but generally balances optimization performance with computational efficiency.
Downloads
References
T. Wolgast and A. Nieße, “Learning the optimal power flow: Environment design matters,” Energy and AI, vol. 17, p. 100410, Sep. 2024, doi: 10.1016/J.EGYAI.2024.100410.
M. Ahmadipour, Z. Ali, V. K. Ramachandaramurthy, and H. M. Ridha, “A memory-guided Jaya algorithm to solve multi-objective optimal power flow integrating renewable energy sources,” Appl Soft Comput, vol. 164, p. 111924, Oct. 2024, doi: 10.1016/J.ASOC.2024.111924.
R. Mieth and H. V. Poor, “Prescribed robustness in optimal power flow,” Electric Power Systems Research, vol. 235, p. 110704, Oct. 2024, doi: 10.1016/J.EPSR.2024.110704.
A. Deihim, D. Apostolopoulou, and E. Alonso, “Initial estimate of AC optimal power flow with graph neural networks,” Electric Power Systems Research, vol. 234, p. 110782, Sep. 2024, doi: 10.1016/J.EPSR.2024.110782.
J. K. Skolfield and A. R. Escobedo, “Operations research in optimal power flow: A guide to recent and emerging methodologies and applications,” Eur J Oper Res, vol. 300, no. 2, pp. 387–404, Jul. 2022, doi: 10.1016/J.EJOR.2021.10.003.
K. Lenin, B. Ravindhranath Reddy, and M. Suryakalavathi, “Hybrid Tabu search-simulated annealing method to solve optimal reac-tive power problem,” International Journal of Electrical Power & Energy Systems, vol. 82, pp. 87–91, Nov. 2016, doi: 10.1016/J.IJEPES.2016.03.007.
K. M. Sallam, M. A. Hossain, S. Elsayed, R. K. Chakrabortty, M. J. Ryan, and M. A. Abido, “Optimal power flow considering intermit-tent solar and wind generation using multi-operator differential evolution algorithm,” Electric Power Systems Research, vol. 232, p. 110377, Jul. 2024, doi: 10.1016/J.EPSR.2024.110377.
A. Ebrahimi, R. Haghighi, H. Yektamoghadam, M. Dehghani, and A. Nikoofard, “Optimal Power Flow by Genetic Algorithm,” in Fron-tiers in Genetics Algorithm Theory and Applications, M. Khosravy, N. Gupta, and O. Witkowski, Eds., Springer, Singapore, 2024, pp. 121–136. doi: 10.1007/978-981-99-8107-6_7.
A. S. Alghamdi and M. A. Zohdy, “Boosting cuckoo optimization algorithm via Gaussian mixture model for optimal power flow prob-lem in a hybrid power system with solar and wind renewable energies,” Heliyon, vol. 10, no. 11, p. e31755, Jun. 2024, doi: 10.1016/J.HELIYON.2024.E31755.
W. Bai, F. Meng, M. Sun, H. Qin, R. Allmendinger, and K. Y. Lee, “Differential evolutionary particle swarm optimization with orthogo-nal learning for wind integrated optimal power flow,” Appl Soft Comput, vol. 160, p. 111662, Jul. 2024, doi: 10.1016/J.ASOC.2024.111662.
C. Shilaja and T. Arunprasath, “Optimal power flow using Moth Swarm Algorithm with Gravitational Search Algorithm considering wind power,” Future Generation Computer Systems, vol. 98, pp. 708–715, Sep. 2019, doi: 10.1016/J.FUTURE.2018.12.046.
A. R. Bhowmik and A. K. Chakraborty, “Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm,” International Journal of Electrical Power & Energy Systems, vol. 62, pp. 323–334, Nov. 2014, doi: 10.1016/J.IJEPES.2014.04.053.
H. R. E. H. Bouchekara, M. A. Abido, and M. Boucherma, “Optimal power flow using Teaching-Learning-Based Optimization tech-nique,” Electric Power Systems Research, vol. 114, pp. 49–59, Sep. 2014, doi: 10.1016/J.EPSR.2014.03.032.
S. Mugemanyi, Z. Qu, F. X. Rugema, Y. Dong, C. Bananeza, and L. Wang, “Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm,” IEEE Access, vol. 8, pp. 65830–65867, 2020, doi: 10.1109/ACCESS.2020.2982988.
A. M. Shaheen, R. A. El-Sehiemy, H. M. Hasanien, and A. R. Ginidi, “An improved heap optimization algorithm for efficient energy management based optimal power flow model,” Energy, vol. 250, p. 123795, Jul. 2022, doi: 10.1016/J.ENERGY.2022.123795.
V. B. K, R. S, E. Verdú, K. K, and R. S P, “An optimal power flow solution to deregulated electricity power market using meta-heuristic algorithms considering load congestion environment,” Electric Power Systems Research, vol. 214, p. 108867, Jan. 2023, doi: 10.1016/J.EPSR.2022.108867.
X. He, W. Wang, J. Jiang, and L. Xu, “An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow,” Energies (Basel), vol. 8, no. 4, pp. 2412–2437, Mar. 2015, doi: 10.3390/EN8042412.
S. P. Dash, K. R. Subhashini, and P. Chinta, “Development of a Boundary Assigned Animal Migration Optimization algorithm and its application to optimal power flow study,” Expert Syst Appl, vol. 200, p. 116776, Aug. 2022, doi: 10.1016/J.ESWA.2022.116776.
W. Bai, K. Y. Lee, and I. Eke, “Optimal Power Flow Considering Global Voltage Stability Based on a Hybrid Modern Heuristic Tech-nique,” IFAC-PapersOnLine, vol. 55, no. 9, pp. 413–418, Jan. 2022, doi: 10.1016/J.IFACOL.2022.07.072.
V. Roberge and M. Tarbouchi, “Hybrid Method Based on Metaheuristics and Interior Point for Optimal Power Flow,” in 5th Interna-tional Conference on Intelligent Computing in Data Sciences, Fez, Morocco: Institute of Electrical and Electronics Engineers Inc., Oct. 2021. doi: 10.1109/ICDS53782.2021.9626722.
R. Rusilawati, “Pembentukan Kurva Kapabilitas Generator Menggunakan Pendekatan Sistem Modified Single Machine to Infinite Bus (M-SMIB) untuk Batasan Optimisasi Sistem Pembangkitan,” Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer, vol. 4, no. 2, pp. 132–139, Oct. 2020, doi: 10.31961/ELTIKOM.V4I2.225.
R. Azizipanah-Abarghooee, V. Terzija, F. Golestaneh, and A. Roosta, “Multiobjective Dynamic Optimal Power Flow Considering Fuzzy-Based Smart Utilization of Mobile Electric Vehicles,” IEEE Trans Industr Inform, vol. 12, no. 2, pp. 503–514, Apr. 2016, doi: 10.1109/TII.2016.2518484.
O. Bozorg-Haddad, M. Solgi, and H. A. Loaiciga, Meta-heuristic and evolutionary algorithms for engineering optimization. Hoboken, NJ: John Wiley and Sons, Inc., 2017.
X. Guo, J. Hu, H. Yu, M. Wang, and B. Yang, “A new population initialization of metaheuristic algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature selection,” Comput Biol Med, vol. 166, p. 107538, Nov. 2023, doi: 10.1016/J.COMPBIOMED.2023.107538.
Q. Li, S. Y. Liu, and X. S. Yang, “Influence of initialization on the performance of metaheuristic optimizers,” Appl Soft Comput, vol. 91, p. 106193, Jun. 2020, doi: 10.1016/J.ASOC.2020.106193.
A. E. Chaib, H. R. E. H. Bouchekara, R. Mehasni, and M. A. Abido, “Optimal power flow with emission and non-smooth cost func-tions using backtracking search optimization algorithm,” International Journal of Electrical Power & Energy Systems, vol. 81, pp. 64–77, Oct. 2016, doi: 10.1016/J.IJEPES.2016.02.004.
M. R. Narimani, R. Azizipanah-Abarghooee, B. Zoghdar-Moghadam-Shahrekohne, and K. Gholami, “A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type,” Energy, vol. 49, no. 1, pp. 119–136, Jan. 2013, doi: 10.1016/J.ENERGY.2012.09.031.
A. E. Chaib, H. R. E. H. Bouchekara, R. Mehasni, and M. A. Abido, “Optimal power flow with emission and non-smooth cost func-tions using backtracking search optimization algorithm,” International Journal of Electrical Power & Energy Systems, vol. 81, pp. 64–77, Oct. 2016, doi: 10.1016/J.IJEPES.2016.02.004.
L. Slimani and T. Bouktir, “Economic power dispatch of power systems with pollution control using artificial bee colony optimization,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 21, no. 6, pp. 1515–1527, Jan. 2013, doi: 10.3906/elk-1106-10.
R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, Feb. 2011, doi: 10.1109/TPWRS.2010.2051168.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Firmansyah Nur Budiman, Taufal Hidayat, Rudi Uswarman

This work is licensed under a Creative Commons Attribution 4.0 International License.
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).