Random State Initialized Logistic Regression for Improved Heart Attack Prediction


  • Kevyn Alifian Hernanda Wibowo Universitas Negeri Semarang, Indonesia
  • Salma Aprilia Huda Putri Universitas Negeri Semarang, Indonesia
  • Jumanto Jumanto Universitas Negeri Semarang, Indonesia
  • Much Aziz Muslim University Tun Hussein Onn Malaysia, Malaysia




Heart Attack, Logistic Regression, Machine Learning, Prediction, Random State


One of the primary causes of death in Indonesia is heart attacks. Therefore, an effective method of pre-diction is required to determine whether a patient is experiencing a heart attack. One efficient approach is to use machine learning models. However, it is still rare to find machine learning models that have good performance in predicting heart attacks. This study aims to develop a machine learning model on Logistic Regression algorithm in predicting heart attack. Logistic Regression is one of the machine learning meth-ods that can be used to study the relationship between a binary response variable [0,1] and a set of pre-dictor variables, and can be used directly to calculate probabilities. In this study, a random state is ini-tialized in the Logistic Regression model in order to stabilize the training of the machine learning model and increase the precision of the proposed method. The results of this study show that the proposed model can be a method that has good performance in predicting heart attack disease.


Download data is not yet available.


M. S. Amin, Y. K. Chiam, and K. D. Varathan, “Identification of significant features and data mining techniques in predicting heart disease,” Telemat. Informatics, vol. 36, pp. 82–93, 2019.

R. P. Cherian, N. Thomas, and S. Venkitachalam, “Weight optimized neural network for heart disease prediction using hybrid lion plus particle swarm algorithm,” J. Biomed. Inform., vol. 110, p. 103543, 2020.

L. Ali, A. Rahman, A. Khan, M. Zhou, A. Javeed, and J. A. Khan, “An automated diagnostic system for heart disease prediction based on X2 statistical model and optimally configured deep neural network,” Ieee Access, vol. 7, pp. 34938–34945, 2019.

P. Rani, R. Kumar, N. M. O. S. Ahmed, and A. Jain, “A decision support system for heart disease prediction based upon machine learning,” J. Reliab. Intell. Environ., vol. 7, no. 3, pp. 263–275, 2021.

H. W. Dhany, “Performa Algoritma K-Nearest Neighbour dalam Memprediksi Penyakit Jantung,” in Seminar Nasional Informatika (SENATIKA), 2021, pp. 176–179.

E. Evangelista, “A hybrid machine learning framework for predicting students’ performance in virtual learning environment,” Int. J. Emerg. Technol. Learn., vol. 16, no. 24, pp. 255–272, 2021.

R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,” JTIK (Jurnal Tek. Inform. Kaputama), vol. 3, no. 1, pp. 22–28, 2019.

P. D. Putra and D. P. Rini, “Prediksi Penyakit Jantung dengan Algoritma Klasifikasi,” Pros. Annu. Res. Semin, vol. 5, no. 1, pp. 978–979, 2019.

P. Subarkah, W. R. Damayanti, and R. A. Permana, “Comparison of correlated algorithm accuracy Naive Bayes Classifier and Naive Bayes Classifier for heart failure classification,” Ilk. J. Ilm., vol. 14, no. 2, pp. 120–125, 2022.

D. Deepika and N. Balaji, “Effective heart disease prediction using novel MLP-EBMDA approach,” Biomed. Signal Process. Control, vol. 72, p. 103318, 2022.

A. M. Hemeida, S. Alkhalaf, A. Mady, E. A. Mahmoud, M. E. Hussein, and A. M. B. Eldin, “Implementation of nature-inspired optimization algorithms in some data mining tasks,” Ain Shams Eng. J., vol. 11, no. 2, pp. 309–318, 2020.

P. Dileep et al., “An automatic heart disease prediction using cluster-based bi-directional LSTM (C-BiLSTM) algorithm,” Neural Comput. Appl., vol. 35, no. 10, pp. 7253–7266, 2023.

T. S. Pooja and P. Shrinivasacharya, “Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection systems) in cyber security,” Glob. Transitions Proc., vol. 2, no. 2, pp. 448–454, 2021.

P. Kanchanamala, A. S. Alphonse, and P. V. B. Reddy, “Heart disease prediction using hybrid optimization enabled deep learning network with spark architecture,” Biomed. Signal Process. Control, vol. 84, p. 104707, 2023.

D. Hassan, H. I. Hussein, and M. M. Hassan, “Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis,” Biomed. Signal Process. Control, vol. 79, p. 104019, 2023.

S. Mohapatra, S. Maneesha, P. K. Patra, and S. Mohanty, “Heart Diseases Prediction based on Stacking Classifiers Model,” Procedia Comput. Sci., vol. 218, pp. 1621–1630, 2023.

K. Kannan and A. Menaga, “Risk factor prediction by naive bayes classifier, logistic regression models, various classification and regression machine learning techniques,” Proc. Natl. Acad. Sci. India Sect. B Biol. Sci., vol. 92, no. 1, pp. 63–79, 2022.

V. A. Gunawan, I. I. Fitriani, and L. S. A. Putra, “Klasifikasi Rambu Lalu Lintas Menggunakan Ekstraksi Ciri Wavelet Dan Jarak Euclidean,” J. ELTIKOM J. Tek. Elektro, Teknol. Inf. dan Komput., vol. 3, no. 1, pp. 26–35, 2019.

M. Fang and D. T. N. Huy, “Building a cross-border e-commerce talent training platform based on logistic regression model,” J. High Technol. Manag. Res., vol. 34, no. 2, p. 100473, 2023.

S. Hafeez, S. S. Alotaibi, A. Alazeb, N. Al Mudawi, and W. Kim, “Multi-sensor-based Action Monitoring and Recognition via Hybrid Descriptors and Logistic Regression,” IEEE Access, 2023.

T. Ding, T. Readshaw, S. Rigopoulos, and W. P. Jones, “Machine learning tabulation of thermochemistry in turbulent combustion: An approach based on hybrid flamelet/random data and multiple multilayer perceptrons,” Combust. Flame, vol. 231, p. 111493, 2021.

M. A. Muslim, T. L. Nikmah, D. A. A. Pertiwi, and Y. Dasril, “New model combination meta-learner to improve accuracy prediction P2P lending with stacking ensemble learning,” Intell. Syst. with Appl., vol. 18, p. 200204, 2023.

D. I. Wijaya, M. K. Aulia, J. Jumanto, and M. F. Al Hakim, “Room occupancy classification using multilayer perceptron,” J. Soft Comput. Explor., vol. 2, no. 2, pp. 163–168, 2021.

V. Chang, V. R. Bhavani, A. Q. Xu, and M. A. Hossain, “An artificial intelligence model for heart disease detection using machine learning algorithms,” Healthc. Anal., vol. 2, p. 100016, 2022.

A. A. Almazroi, E. A. Aldhahri, S. Bashir, and S. Ashfaq, “A Clinical Decision Support System for Heart Disease Prediction using Deep Learning,” IEEE Access, 2023.

A. A. Hussein, “Improve the performance of K-means by using genetic algorithm for classification heart attack,” Int. J. Electr. Comput. Eng., vol. 8, no. 2, p. 1256, 2018.

M. Ozcan and S. Peker, “A classification and regression tree algorithm for heart disease modeling and prediction,” Healthc. Anal., vol. 3, p. 100130, 2023.

M. Gjoreski, A. Gradišek, B. Budna, M. Gams, and G. Poglajen, “Machine learning and end-to-end deep learning for the detection of chronic heart failure from heart sounds,” Ieee Access, vol. 8, pp. 20313–20324, 2020.

S. A. Ali et al., “An optimally configured and improved deep belief network (OCI-DBN) approach for heart disease prediction based on Ruzzo–Tompa and stacked genetic algorithm,” IEEE Access, vol. 8, pp. 65947–65958, 2020.




How to Cite

Wibowo, K.A.H. et al. 2023. Random State Initialized Logistic Regression for Improved Heart Attack Prediction. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 7, 2 (Dec. 2023), 116–124. DOI:https://doi.org/10.31961/eltikom.v7i2.822.