Perbandingan Additive dan Multiplicative Exponential Smoothing Terhadap Prakiraan Kualitas Udara di Banjarmasin


  • Ahmad Yusuf Universitas AMIKOM Yogyakarta, Yogyakarta, Indonesia
  • Kusrini Kusrini Universitas AMIKOM Yogyakarta, Yogyakarta, Indonesia
  • Alva Hendi Muhammad Universitas AMIKOM Yogyakarta, Yogyakarta, Indonesia



Additive, Air quality, Banjarmasin, Exponential smoothing, Multiplicative


Human health concerns are one of the important consequences of low air quality. The low air quality of each city will have long-term impacts such as global warming and anthropogenic greenhouse effects. Air quality usually occurs in areas that are in some parts of the country such as Kalimantan Island. As the third largest island in the world, Kalimantan can be said to be the lungs of the world like the haze problem that enveloped the city of Banjarmasin in 2019. This condition can result in high sufferers of Acute Respiratory Tract Infection (ISPA). Decision making by stakeholders needs to be studied in depth to prevent this. One of the efforts that can be done is the air quality forecast that will occur. Data obtained from BMKG Banjarmasin is the initial material for the forecast. Air quality forecast will use Triple Exponential Smoothing with 2 types of modeling namely additive and multiplicative, so this study aims to conduct air quality forecasts in Banjarmasin City in 2021 and 2022 using Additive and Multiplicative Triple Exponential Smoothing. In forecasts using this method, weighting the constant values α, β, γ can result in small error values. To determine the accuracy comparison of the two modeling is done with an RMSE value. The results showed that air quality conditions in Banjarmasin during 2021 and 2022 for CO, O3, and PM pollutants were in the category of safe for human health, while for pollutants NO2 and SO2 were declared to have a high index so that air quality can harm the health of living things. In comparison, multiplicative modeling on CO forecasts (α= 0.5, β = 0.001, and γ = 0.149), NO2 (α = 0.5, β = 0.024, and γ = 0.022), and SO2 (α = 0.5, β = 0.001, and γ = 0.037) has high accuracy and small error values compared to additive modeling. In contrast, additive modeling in O3 (α = 0.5, β = 0.001, and γ = 0.06) and PM (α = 0.434, β = 0.001, and γ = 0.213) have high accuracy and low error values compared to multiplicative modeling. The conclusion obtained is the difference in forecast results between additive and multiplicative modeling on air quality forecasts in Banjarmasin because multiplicative modeling is used when there is a trend or sign that seasonal patterns depend on the size of the data. In other words, seasonal patterns enlarge as the data size increases. Additive models are used if this trend does not occur.


Download data is not yet available.


M. Greenstone and Q. (Claire) Fan, “Indonesia’s Worsening Air Quality and its Impact on Life Expectancy,” Air Qual. Life Index AQLI, 2019.
R. A. Rohde and R. A. Muller, “Air Pollution in China: Mapping of Concentrations and Sources,” PLOS ONE, vol. 10, no. 8, p. e0135749, Aug. 2015, doi: 10.1371/journal.pone.0135749.
N. F. Sulaeman, A. Nuryadin, R. Widyastuti, and L. Subagiyo, “Air Quality Index and the Urgency of Environmental Education in Kalimantan,” J. Pendidik. IPA Indones., vol. 9, no. 3, Art. no. 3, Sep. 2020, doi: 10.15294/jpii.v9i3.24049.
N. von Uexkull and H. Buhaug, “Security implications of climate change: A decade of scientific progress,” J. Peace Res., vol. 58, no. 1, pp. 3–17, Jan. 2021, doi: 10.1177/0022343320984210.
A. Niswanti, E. S. Mahreda, A. Yamani, and T. Atmowijoyo, “Kadar Debu Ambien Di Terminal Induk KM 6 Banjarmasin Provinsi Kalimantan Selatan dan Dampaknya terhadap Kesehatan Masyarakat,” EnviroScienteae, vol. 9, no. 3, Art. no. 3, Oct. 2016, doi: 10.20527/es.v9i3.1993.
Kementerian Lingkungan Hidup dan Kehutanan, Indeks Kualitas Udara. Kementerian Lingkungan Hidup dan Kehutanan, 2020.
N. Inayah, H. Suhel, and M. Andriani, “Penyajian Peta Kualitas Udara Kota Banjarmasin (SO2 dan NO2),” POROS Tek., vol. 11, no. 1, pp. 07–11, Jun. 2019, doi: 10.31961/porosteknik.v11i1.799.
S. W. See, R. Balasubramanian, E. Rianawati, S. Karthikeyan, and D. G. Streets, “Characterization and Source Apportionment of Particulate Matter ≤ 2.5 μm in Sumatra, Indonesia, during a Recent Peat Fire Episode,” Environ. Sci. Technol., vol. 41, no. 10, pp. 3488–3494, May 2007, doi: 10.1021/es061943k.
J. A. Fernando, “Identifikasi Kontribusi Pencemaran PM10 Menggunakan Metode Reseptor Chemical Mass Balance (CMB) (Studi Kasus: Kota Pekanbaru, Provinsi Riau),” J. Tek. Lingkung., vol. 6, no. 2, 2017, Accessed: Jul. 12, 2021. [Online]. Available:
G. A. Ridzky, B. Zaman, and H. S. Huboyo, “Identifikasi Kontribusi Pencemaran PM10 dengan Metode Reseptor Positive Matrix Factorization (Pmf) Studi Kasus : Kota Pekanbaru Provinsi Riau,” J. Tek. Lingkung., vol. 6, no. 2, pp. 1–12, 2017, Accessed: Jul. 12, 2021. [Online]. Available:
S. Damayanti and P. Lestari, “Receptor Modelling of particulate matter at residential area near industrial region in Indonesia using Positive Matrix Factorization,” E3S Web Conf., vol. 148, p. 03003, 2020, doi: 10.1051/e3sconf/202014803003.
M. Santoso et al., “Preliminary study of the sources of ambient air pollution in Serpong, Indonesia,” Atmospheric Pollut. Res., vol. 2, no. 2, pp. 190–196, Apr. 2011, doi: 10.5094/APR.2011.024.
L. Rixson, E. Riani, and M. Santoso, “Karakterisasi Paparan Long Term Particulate Matter di Puspiptek Serpong-Kota Tangerang Selatan,” J. Ilm. Apl. Isot. Dan Radiasi, vol. 11, no. 1, Art. no. 1, May 2016, doi: 10.17146/jair.2015.11.1.2703.
M. Santoso, D. D. Lestiani, and A. Markwitz, “Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road,” J. Radioanal. Nucl. Chem., vol. 297, no. 2, pp. 165–169, Aug. 2013, doi: 10.1007/s10967-012-2350-5.
M. Santoso, P. K. Hopke, A. Hidayat, and Diah Dwiana L., “Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization,” Sci. Total Environ., vol. 397, no. 1, pp. 229–237, Jul. 2008, doi: 10.1016/j.scitotenv.2008.01.057.
P. Lestari and Y. D. Mauliadi, “Source apportionment of particulate matter at urban mixed site in Indonesia using PMF,” Atmos. Environ., vol. 43, no. 10, pp. 1760–1770, Mar. 2009, doi: 10.1016/j.atmosenv.2008.12.044.
L. A. Hirzi, “Identifikasi Sumber Logam dalam SPM (Suspended Particulate Matter) di Kecamatan Bangsri Kabupaten Jepara dengan Aplikasi PMF (Positive Matrix Factorization),” other, Universitas Diponegoro, 2018. Accessed: Jul. 12, 2021. [Online]. Available:
H. Huboyo, A. Budihardjo, and E. Primabudi, “Preliminary Study on Source Apportionment of Ambient Air In Semarang City Using Cmb Model (Case Study In Pedurungan Site),” 2008. Accessed: Jul. 12, 2021. [Online]. Available:
R. S. Hanafi, “identifikasi sumber logam yang terkandung pada SPM (suspended particulate matter) di Kecamatan Paiton Kabupaten Probolinggo denga Aplikasi Positive Matrix Factorization (PMF),” other, Universitas Diponegoro, 2018. Accessed: Jul. 12, 2021. [Online]. Available:
E. F. Ahmad and M. Santoso, “Analisis Karaterisasi Konsentrasi dan Komposisi Partikulat Udara (Studi Case : Surabaya),” J. Kim. Val., vol. 2, no. 2, Art. no. 2, Dec. 2016.
S. Yunus, M. Rashid, R. Mat, S. Baharun, and H. Che Man, “Characteristic of the PM10 in Urban Environment of Makassar,” J. Urban Environ. Eng., pp. 198–207, Oct. 2019, doi: 10.4090/juee.2019.v13n1.198207.
M. T. Lei, J. Monjardino, L. Mendes, D. Gonçalves, and F. Ferreira, “Macao air quality forecast using statistical methods,” Air Qual. Atmosphere Health, vol. 12, no. 9, pp. 1049–1057, Sep. 2019, doi: 10.1007/s11869-019-00721-9.
V. Isakov, M. Johnson, and J. Touma, “Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations,” Air Pollut Model Its Appl XXI, pp. 717–722, Jan. 2011, doi: 10.1007/978-94-007-1359-8_117.
W. Astuti and Y. Kusumawardani, “Analisis Pencemaran Udara Dengan Box Model (Daya Tampung Beban Pencemar Udara) Studi Kasus Di Kota Tangerang,” Neo Tek., vol. 3, no. 1, Art. no. 1, 2017, doi: 10.37760/neoteknika.v3i1.1048.
A. Y. Yeung, F. Roewer-Despres, L. Rosella, and F. Rudzicz, “Machine Learning–Based Prediction of Growth in Confirmed COVID-19 Infection Cases in 114 Countries Using Metrics of Nonpharmaceutical Interventions and Cultural Dimensions: Model Development and Validation,” J. Med. Internet Res., vol. 23, no. 4, p. e26628, Apr. 2021, doi: 10.2196/26628.
S. Mahajan, L.-J. Chen, and T.-C. Tsai, “Short-Term PM2.5 Forecasting Using Exponential Smoothing Method: A Comparative Analysis,” Sensors, vol. 18, no. 10, p. 3223, Sep. 2018, doi: 10.3390/s18103223.
A. Arnita, “Comparison of Single Exponential Smoothing, Naive Model, and SARIMA Methods for Forecasting Rainfall in Medan,” J. Mat. Stat. Dan Komputasi, vol. 17, no. 1, Art. no. 1, Aug. 2020, doi: 10.20956/jmsk.v17i1.10236.
W. K. A. Wan Ahmad and S. Ahmad, “Arima model and Exponential Smoothing method: A comparison,” AIP Conf. Proc., vol. 1522, no. 1, pp. 1312–1321, Apr. 2013, doi: 10.1063/1.4801282.
H. Himawan and P. D. Silitonga, “Comparison of Forecasting Accuracy Rate of Exponential Smoothing Method on Admission of New Students,” J. Crit. Rev., vol. 7, no. 2, 2020.
B. Siregar, I. A. Butar-Butar, R. F. Rahmat, U. Andayani, and F. Fahmi, “Comparison of Exponential Smoothing Methods in Forecasting Palm Oil Real Production,” J. Phys. Conf. Ser., vol. 801, p. 012004, Jan. 2017, doi: 10.1088/1742-6596/801/1/012004.
D. Chaniago and A. Zahara, “Kondisi Kualitas Udara Di Beberapa Kota Besar Tahun 2019,” Direktorat Pengendalian Pencemaran Udara, Direktorat Jenderal Pengendalian Pencemaran dan Kerusakan Lingkungan, Kementerian Lingkungan Hidup dan Kehutanan, 2019.
K. Suppalakpanya, R. Nikhom, T. Booranawong, and A. Booranawong*, “Study of Several Exponential Smoothing Methods for Forecasting Crude Palm Oil Productions in Thailand,” Curr. Appl. Sci. Technol., vol. 19, no. 2, Art. no. 2, Mar. 2019.
K. Singh et al., “Implementation of Exponential Smoothing for Forecasting Time Series Data,” Jan. 2019.




How to Cite

Yusuf, A., Kusrini, K., & Muhammad, A. H. (2022). Perbandingan Additive dan Multiplicative Exponential Smoothing Terhadap Prakiraan Kualitas Udara di Banjarmasin. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 6(1), 40–55.