Design of A Thermoelectric Generator for Battery Charging using Heat from A Steam Iron Base

Authors

  • Delta Sundari Jakarta Global University, Indonesia
  • Mauludi Manfaluthy Jakarta Global University, Indonesia
  • Legenda Prameswono Pratama Jakarta Global University, Indonesia
  • Brainvendra Widi Dionova Jakarta Global University, Indonesia
  • Devan Junesco Vresdian Jakarta Global University, Indonesia
  • Arisa Olivia Putri Jakarta Global University, Indonesia
  • Safaa Najah Sahud Al-Humairi Management and Science University, Malaysia
  • M. N. Mohammed Gulf University, Kingdom of Bahrain

DOI:

https://doi.org/10.31961/eltikom.v8i2.1307

Keywords:

Alternative Energy, Thermoelectric, Buck-boost converter, Seebeck effect, Heatsink

Abstract

This study explores an alternative method of generating electrical energy using a thermoelectric generator that utilizes heat from the soleplate of a steam iron and six thermoelectric units connected in series. Based on the Seebeck effect, the thermoelectric modules convert the temperature difference into voltage. An increase in the heat source temperature leads to higher voltage production by the series-connected thermoelectric modules, although the electrical power output depends on the connected load. The power generator design includes thermoelectric modules, a buck-boost converter, an 18650 lithium-ion battery, and a 5-watt, 12-volt DC lamp. The study addresses key aspects such as the impact of temperature on power output in series-connected and parallel-connected thermoelectric circuits, and the efficient conversion of heat from the steam iron soleplate into electrical energy. The research objectives are threefold: to determine power and temperature values for series-connected thermoelectric circuits, to evaluate power and temperature values for parallel-connected thermoelectric circuits, and to utilize heat from the steam iron soleplate as a thermoelectric heat source for generating electrical energy. Testing involved a buck-boost converter connected to a battery, producing 12.35 volts with a temperature difference of 49°C. Design enhancements, such as integrating heatsinks or coolers on the cold side of the modules to maintain a significant temperature differential, are critical for optimizing performance.

Downloads

Download data is not yet available.

References

S. P. Simarmata, “Analisis Kinerja Modul Termoelektrik Generator Sp 1814 Hot Side Dan Cold Side Terhadap Temperatur Per-mukaan Aspal Dan Output Dari Pelat Baja Dan Aluminium,” Jurnal Sains dan Teknologi, vol. 20, no. 1, pp. 18–24, 2021.

R. Rimbawati, B. Prandika, and C. Cholish, “Rancang Bangun Sistem Konversi Energi Panas Api Menjadi Energi Listrik Sebagai Alat Charger Baterai Menggunakan Termoelektrik,” Circuit: Jurnal Ilmiah Pendidikan Teknik Elektro, vol. 6, no. 1, p. 1, Feb. 2022, doi: 10.22373/crc.v6i1.10236.

S. S. Putra and H. Habibullah, “Prototipe Sistem Generator Termoelektrik Sebagai Pembangkit Listrik Memanfaatkan Limbah Panas Pabrik Semen,” JTEIN: Jurnal Teknik Elektro Indonesia, vol. 4, no. 2, pp. 573–583, 2023.

D. Nur Huda, D. Siti, and A. Kumala, “Didik Nur Huda & Siti Ayu Kumala / Identifikasi Termoelektrik Generator sebagai 6 SINASIS 1 (1) (2020) P r o s i d i n g S e m i n a r N a s i o n a l S a i n s Identifikasi Termoelektrik Generator sebagai Pembangkit Tenaga Listrik.”

A. B. Pradana et al., “Perancangan Purwarupa Pembangkit Termoelektrik sebagai Media Pembelajaran Konversi Energi,” Jurnal Edukasi Elektro, vol. 5, no. 1, pp. 14–19, 2021.

S. Y. Kalpikajati and S. Hermawan, “Hambatan Penerapan Kebijakan Energi Terbarukan di Indonesia,” Batulis Civil Law Review, vol. 3, no. 2, pp. 187–207, 2022.

R. Rimbawati, B. Prandika, and C. Cholish, “Rancang Bangun Sistem Konversi Energi Panas Api Menjadi Energi Listrik Sebagai Alat Charger Baterai Menggunakan Termoelektrik,” CIRCUIT: Jurnal Ilmiah Pendidikan Teknik Elektro, vol. 6, no. 1, pp. 1–8, 2022.

C. Cekdin, Z. Nawawi, and M. Faizal, Generator Termoelektrik Sebagai Sumber Energi Alternatif. Penerbit Andi, 2023.

K. Rezki, P. Primawati, A. Ambiyar, and R. Lapisa, “The Influence of Coolant Fluid Variations on the Thermoelectric Generator Per-formance Utilizing Solar Radiation on Zinc Roof,” MOTIVECTION: Journal of Mechanical, Electrical and Industrial Engineering, vol. 5, no. 3, pp. 501–512, 2023.

A. Budiprasojo, “Analisa Performa Dan Durability Thermoelektrik Cooler Type Tec1-12703, Tec1-12705, Tec1-12706, Tec1-12710 Dan Thermoelektrik Generator Type SP1848 27145 SA,” Jurnal Prosiding Sistem Unej, vol. 1, no. 1, pp. 29–32, 2019.

Y. Prasetyo, “Otomatisasi Sistem Pengisian Baterai Pada Sistem Tenaga Surya,” Jurnal Geuthèë: Penelitian Multidisiplin, vol. 4, no. 3, pp. 153–159, 2021.

A. H. H. Faiz and I. D. Saputro, “Sirangsell: Rancang Bangun Sistem Switching Rangkaian Seri Dan Parallel Output Sel Surya Berbasis Arduino Uno,” 2021.

A. A. Yusuf and A. Asrori, “Perbandingan Konsumsi Daya Baterai Li-Ion 18650 Dengan Lifepo4 32700 Berdasarkan Jarak Tempuh,” Jurnal Energi dan Manufaktur Vol, vol. 6, no. 2, pp. 26–30, 2023.

“Rancang Bangun Thermoelectric Generator (TEG) Sebagai Suplai Daya Alternatif Pada Germinasi Kacang Hijau (Ridzki et al).”

R. S. Putra, T. B. Prayitno, and H. Nasbey, “Efisiensi Sifat Termo Elektrik Material Nicl2 Monolayer Terhadap Suhu Berbasis Density Functional Theory,” 2024.

A. A. Rokhim, L. Endahwati, and S. Sutiyono, “Pemanfaatan Energi panas menggunakan Termoelektrik Generator dengan Variasi Peltier,” JURNAL FLYWHEEL, Februari 2023, Vol 14 (1), 19-23, vol. 14, no. 1, pp. 19–23, 2021.

Downloads

Published

27-12-2024

How to Cite

[1]
Sundari, D. et al. 2024. Design of A Thermoelectric Generator for Battery Charging using Heat from A Steam Iron Base. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 8, 2 (Dec. 2024), 141–150. DOI:https://doi.org/10.31961/eltikom.v8i2.1307.

Issue

Section

Articles