Analysis of Hybrid Learning Sentiment among Information Systems Students using The Naïve Bayes Classifier
DOI:
https://doi.org/10.31961/eltikom.v8i2.1144Keywords:
accuracy, hybrid learning, naïve bayes classifier, sentiment analysis, SMOTE up-samplingAbstract
Hybrid learning, which combines online and face-to-face instruction, has gained significant attention. Particularly in the Faculty of Computer Science, student engagement in hybrid learning is a central concern that arises during implementation. Hybrid, or blended learning, integrates various teaching methods, such as face-to-face, computer-based, and mobile learning, and offers advantages by reducing the time required for meetings and information delivery. Sentiment analysis, a branch of text mining, aims to determine public opinion or sentiment on topics, events, or issues. This study surveyed 112 Information Systems students using an online questionnaire to assess their responses to hybrid learning, classified as positive, negative, or neutral using the Naïve Bayes classifier. The research stages included data collection, preprocessing, Naïve Bayes model training, model evaluation, and sentiment analysis. The study aimed to analyze hybrid learning’s impact on students' learning experiences and assess the accuracy of the Naïve Bayes method in classifying sentiments regarding this impact. The results indicated that the initial test had an accuracy of 60.87% without using the SMOTE up-sampling operator, while the second test achieved 80.65% accuracy with the operator.
Downloads
References
S. E. Sadriatwati et al., “Efektifitas Hybrid / Blended Learning Terhadap Hasil Belajar Mahasiswa Pada Matakuliah Praktek,” vol. 5, pp. 164–170, 2023.
D. G. K. P. Ms. Shital A. Patil, Dr. Krishnakant P. Adhiya, “Intelligent Systems and Applications In Engineering Sentiment Analysis of Students Feedback Using Lexicon Based Method and Hybrid Machine Learning Method,” 2024.
L. Azizah, D. Ajipratama, N. Putri, and C. Damarjati, “Analisis Sentimen Masyarakat terhadap Kebijakan Vaksinasi Covid-19 di Indonesia pada Twitter Menggunakan Algoritma LSTM Analysis of Public Sentiment of the Covid-19 Vaccination Policy in Indonesia on Twitter Using the LSTM Algorithm,” J. Ilmu Pengetah. dan Teknol. Komun., vol. 24, no. 2, pp. 161–172, 2022.
Z. Kurniawan and R. Tiaharyadini, “Impact of The Covid-19 Pandemic on Student Learning Styles: Naïve Bayes and Decision Tree Classification in Education,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 13, no. 1, pp. 57–64, 2024, doi: 10.32736/sisfokom.v13i1.1950.
E. Sera, H. Hazriani, M. Mirfan, and Y. Yuyun, “Analisis Sentimen Ulasan Produk di E-Commerce Bukalapak Menggunakan Natural Language Processing,” Pros. SISFOTEK, pp. 237–243, 2023.
T. Hendro Pudjiantoro, F. Rakhmat Umbara, B. Trihatmoko, and U. Jenderal Achmad Yani Jl Terusan Sudirman, “Analisis Sentimen Terhadap E-commerce Pada Media Sosial Twitter Menggunakan Metode Naïve bayes,” Semin. Nas. Inform. dan Apl., p. 2021, 2021.
K. V. S. Toy, Y. A. Sari, and I. Cholissodin, “Analisis Sentimen Twitter menggunakan Metode Naive Bayes dengan Relevance Fre-quency Feature Selection (Studi Kasus: Opini Masyarakat mengenai Kebijakan New Normal),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5068–5074, 2021.
S. K. Wardani and Y. A. Sari, “Analisis Sentimen menggunakan Metode Naïve Bayes Classifier terhadap Review Produk Perawatan Kulit Wajah menggunakan Seleksi Fitur N-gram dan Document Frequency Thresholding,” vol. 5, no. 12, pp. 5582–5590, 2021.
Z. Zaenal, Y. Salim, and L. B. Ilmawan, “Analisis Sentimen terhadap Komentar Negatif di Media Sosial Facebook dengan Metode Klasifikasi Naïve Bayes,” Bul. Sist. Inf. dan Teknol. Islam, vol. 1, no. 4, pp. 259–265, 2020, doi: 10.33096/busiti.v1i4.666.
S. W. Ritonga, . Y., M. Fikry, and E. P. Cynthia, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier,” Build. Informatics, Technol. Sci., vol. 5, no. 1, 2023, doi: 10.47065/bits.v5i1.3535.
V. K. Dewi and R. Dewi, “Evaluasi Kepuasan Pelaksanaan Hybrid Learning di Institut Teknologi Sepuluh Nopember Studi Kasus di Institut Teknologi Sepuluh Nopember (Satisfaction Evaluation Of Hybrid Learning Implementation In Institut Teknologi Sepuluh Nopember),” pp. 1239–1248, 2022.
N. Azriansyah, E. Indra, and N. Azriansyah, “Penerapan Natural Language Processing Untuk Analisis Sentimen Terhadap Aplikasi Streaming,” J. Ilm. BETRIK (Besemah Teknol. Inf. dan Komputer), vol. 14, no. 2, pp. 273–282, 2023.
Dedi Darwis, Nery Siskawati, and Zaenal Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” J. TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2020.
A. A. Rizal, G. S. Nugraha, R. A. Putra, and D. P. Anggraeni, “Twitter Sentiment Analysis in Tourism with Polynomial Naïve Bayes Classifier,” JTIM J. Teknol. Inf. dan Multimed., vol. 5, no. 4, pp. 343–353, 2024, doi: 10.35746/jtim.v5i4.478.
I. Arnawa, “Analisis Sentimen pada Media Sosial Terhadap Perkuliahan Hybrid Menggunakan Algoritma TF IDF dan K Nearest Neighbor,” J. Sist. dan Inform., pp. 40–46, 2022.
N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.
H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.
B. Laurensz and E. Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19 (Analysis of Public Sentiment on Vaccination in Efforts to Overcome the Covid-19 Pandemic),” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021.
Y. Alkhalifi, W. Gata, A. Prasetya, and I. Budiawan, “Analisis Sentimen Penghapusan Ujian Nasional pada Twitter Menggunakan Support Vector Machine dan Naïve Bayes berbasis Particle Swarm Optimization,” J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 2, p. 71, 2020, doi: 10.24014/coreit.v6i2.9723.
Irvandi, B. Irawan, and O. Nurdiawan, “Naive Bayes Dan Wordcloud Untuk Analisis Sentimen Wisata Halal Pulau Lombok,” INFOTECH J., vol. 9, no. 1, pp. 236–242, 2023, doi: 10.31949/infotech.v9i1.5322.
S. Afrizal, H. N. Irmanda, N. Falih, and I. N. Isnainiyah, “Implementasi Metode Naïve Bayes untuk Analisis Sentimen Warga Jakarta Terhadap Kehadiran Mass Rapid Transit,” J. Inform., vol. 15, no. 3, pp. 157–168, 2019.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.
J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.
T. Tupari, S. Abdullah, and C. Chairani, “Visualisasi Data Analisa Sentimen RUU Omnibus Law Kesehatan Menggunakan KNN dengan Software RapidMiner,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 261–268, 2023, doi: 10.30591/jpit.v8i3.5641.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dolly Indra, Ramdaniah Ramdaniah, Widianti Sukur

This work is licensed under a Creative Commons Attribution 4.0 International License.
All accepted papers will be published under a Creative Commons Attribution 4.0 International (CC BY 4.0) License. Authors retain copyright and grant the journal right of first publication. CC-BY Licenced means lets others to Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material for any purpose, even commercially).