Diabetic Retinopathy Severity Level Detection Using Convolution Neural Network


  • Achmad Dinofaldi Firmansyah Management and Science University, Malaysia
  • Saliyah Binti Kahar Management and Science University, Malaysia
  • Zilvanhisna Emka Fitri Politeknik Negeri Jember, Indonesia




diabetic retinopathy, convolution neural network, densenet, tensorflow, keras, image processing


Diabetic retinopathy is a common complication of diabetes mellitus, leading to damage and blockage of retinal blood vessels. Early and accurate detection of diabetic retinopathy severity levels is crucial for timely treatment and prevention of blindness. Diagnostic methods rely on manual examination and human interpretation, resulting in slower and less efficient treatment processes. As a branch of artificial intelligence, computer vision offers a potential solution to analyze retinal images quickly and accurately. The developed system employs image processing techniques and a CNN-based classification model to detect and classify the severity levels of diabetic retinopathy. By providing an automated and efficient approach, the system aims to assist doctors and optometrists in making informed decisions and reducing subjectivity in diagnosis. Early detection through this system can facilitate prompt treatment and improve patient outcomes. The developed system achieves promising results through experimentation and testing with various datasets, with accuracy ranging from 80% to 97%. This project's integration of artificial intelligence, machine learning, and image processing technologies demonstrates their potential in healthcare applications, particularly in diabetic retinopathy diagnosis.


Download data is not yet available.


A. B. Wiratama, Y. Fu’adah, S. Saidah, R. Magdalena, I. D. S. Ubaidah, and R. B. J. Simanjuntak, “Diabetic Retinopathy Classification Based on Fundus Image Using Convolutional Neural Network (CNN) with MobilenetV2,” in Proceeding of the 3rd International Conference on Electronics, Biomedical Engineering, and Health Informatics: ICEBEHI 2022, 5–6 October, Surabaya, Indonesia, Springer, 2023, pp. 89–102.

S. Qummar et al., “A deep learning ensemble approach for diabetic retinopathy detection,” Ieee Access, vol. 7, pp. 150530–150539, 2019.

W. Matuszewski, E. Bandurska-Stankiewicz, R. Modzelewski, U. Kamińska, and M. Stefanowicz-Rutkowska, “Diagnosis and treatment of diabetic retinopathy—historical overview,” Clin. Diabetol., vol. 6, no. 5, pp. 182–188, 2017.

A. Pak, A. Ziyaden, K. Tukeshev, A. Jaxylykova, and D. Abdullina, “Comparative analysis of deep learning methods of detection of diabetic retinopathy,” Cogent Eng., vol. 7, no. 1, p. 1805144, 2020.

A. Invernizzi, M. Pellegrini, E. Cornish, K. Y. C. Teo, M. Cereda, and J. Chabblani, “Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography,” Asia-Pacific J. Ophthalmol., vol. 9, no. 4, pp. 335–348, 2020.

C. Stathopoulos et al., “Successful conservative treatment of massive choroidal relapse in 2 retinoblastoma patients monitored by ultrasound biomicroscopy and/or spectral domain optic coherence tomography,” Ophthalmic Genet., vol. 39, no. 2, pp. 242–246, 2018.

A. S. Vergmann et al., “Optical coherence tomography angiography measured area of retinal neovascularization is predictive of treatment response and progression of disease in patients with proliferative diabetic retinopathy,” Int. J. Retin. Vitr., vol. 6, pp. 1–7, 2020.

B. Tymchenko, P. Marchenko, and D. Spodarets, “Deep learning approach to diabetic retinopathy detection,” arXiv Prepr. arXiv2003.02261, 2020.

J. Lin, J. S. Chang, N. A. Yannuzzi, and W. E. Smiddy, “Cost evaluation of early vitrectomy versus panretinal photocoagulation and intravitreal ranibizumab for proliferative diabetic retinopathy,” Ophthalmology, vol. 125, no. 9, pp. 1393–1400, 2018.

A. Jamal, M. Hazim Alkawaz, A. Rehman, and T. Saba, “Retinal imaging analysis based on vessel detection,” Microsc. Res. Tech., vol. 80, no. 7, pp. 799–811, 2017.

S. Liu and Y. Liu, “Application of human movement and movement scoring technology in computer vision feature in sports training,” IETE J. Res., pp. 1–7, 2021.

D. J. Sundoro, R. Patmasari, and R. Magdalena, “Klasifikasi retinopati diabetik non-proliferatif dan proliferatif berdasarkan citra fundus menggunakan metode gabor wavelet dan klasifikasi jaringan saraf tiruan backpropagation,” eProceedings Eng., vol. 6, no. 2, 2019.

A. Kwasigroch, B. Jarzembinski, and M. Grochowski, “Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy,” in 2018 International Interdisciplinary PhD Workshop (IIPhDW), IEEE, 2018, pp. 111–116.

D. U. R. Yani and D. R. Sulistyaningrum, “Klasifikasi Tingkat Keparahan Non-ProliferativeI Diabetic Retinopathy Bedarsarkan Hard Exudate Menggunakan Extreme Learning Machine,” J. Sains dan Seni ITS, vol. 6, no. 2, pp. A89–A94, 2017.

F. Oktavia, D. Andreswari, and B. Susilo, “Segmentasi Citra Diaretdb1 Pada Area Hemorrhages Diabetic Retinopathy Menggunakan Metode Region Growing,” Rekursif J. Inform., vol. 10, no. 1, pp. 1–11, 2022.

C.-H. Lee and Y.-H. Ke, “Fundus images classification for diabetic retinopathy using deep learning,” in Proceedings of the 13th International Conference on Computer Modeling and Simulation, 2021, pp. 264–270.

S. H. Khan, Z. Abbas, and S. M. D. Rizvi, “Classification of diabetic retinopathy images based on customised CNN architecture,” in 2019 Amity International conference on artificial intelligence (AICAI), IEEE, 2019, pp. 244–248.

M. A. Morid, A. Borjali, and G. Del Fiol, “A scoping review of transfer learning research on medical image analysis using ImageNet,” Comput. Biol. Med., vol. 128, p. 104115, 2021.

M. A. Pangestu and H. Bunyamin, “Analisis Performa dan Pengembangan Sistem Deteksi Ras Anjing pada Gambar dengan Menggunakan Pre-Trained CNN Model,” J. Tek. Inform. dan Sist. Inf., vol. 4, no. 2, pp. 341–348, 2018.

C. Francois, “Deep learning with Python.” Manning Publications, 2018.

A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

D. Grattarola and C. Alippi, “Graph neural networks in tensorflow and keras with spektral application notes,” IEEE Comput. Intell. Mag., vol. 16, no. 1, pp. 99–106, 2021.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Q. Weinberger, “Convolutional networks with dense connectivity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 8704–8716, 2019.




How to Cite

Firmansyah, A.D. et al. 2024. Diabetic Retinopathy Severity Level Detection Using Convolution Neural Network. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 8, 1 (Jun. 2024), 66–74. DOI:https://doi.org/10.31961/eltikom.v8i1.1112.