Design and Implementation of A Dual-Axis Solar Tracking System using Arduino Uno Microcontroller


  • Cristoni Hasiholan Pardosi Atma Jaya Catholic University of Indonesia, Indonesia
  • Marsul Siregar Atma Jaya Catholic University of Indonesia, Indonesia
  • Lanny W. Pandjaitan Atma Jaya Catholic University of Indonesia, Indonesia



Dual-Axis Solar Tracking System, LDR Sensors, Stepper Motors, Arduino Uno Microcontroller, Solar Energy Capture


This paper presents a dual-axis solar tracking system developed and evaluated using LDR sensors and stepper motors, controlled by an Arduino Uno microcontroller. The aim was to enhance photovoltaic energy efficiency by designing a system capable of automatically adjusting the position of solar panels to follow the sun's movement throughout the day. Comparative testing between static solar panels and those equipped with solar trackers demonstrated that the latter produced 35% more power on average. Additionally, the dual tracking system showed a 14% improvement in efficiency over previous averages noted in existing references. Analysis of azimuth and elevation angles confirmed that the solar tracker accurately adjusted the panels' position, significantly boosting solar energy capture. This finding is consistent with prior research, which also supports the efficacy of solar trackers in enhancing photovoltaic efficiency. Future research should expand testing to include various weather and environmental conditions and focus on developing more advanced control algorithms to enhance system responsiveness. Continuous advancements in solar tracking technology are vital for maximizing solar energy potential and facilitating a transition to a more sustainable society.


Download data is not yet available.


F. B. Setiawan, S. Riyadi, L. H. Pratomo, and A. Wibisono, “A 5.4 kWp Microgrid Laboratory Development for Higher Education and Industrial Workshop,” in 2022 14th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), Phnom Penh, Cambodia: IEEE, Dec. 2022, pp. 89–94. doi: 10.1109/SKIMA57145.2022.10029640.

S. Venkateshwarlu, V. S. Pranav, Ch. S. Anirudh, and K. S. Reddy, “A Comparative Evaluation of Various Solar Trackers to Harness Maximum Energy - A Brief Review,” in 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS), Mahendragarh, India: IEEE, Nov. 2022, pp. 52–56. doi: 10.1109/SSTEPS57475.2022.00026.

N. M. Kumar, M. S. P. Subathra, and J. E. Moses, “On-Grid Solar Photovoltaic System: Components, Design Considerations, and Case Study,” in 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai: IEEE, Feb. 2018, pp. 616–619. doi: 10.1109/ICEES.2018.8442403.

Md. N. Reza, Md. S. Hossain, N. Mondol, and Md. A. Kabir, “Design and Implementation of an Automatic Single Axis Solar Tracking System to Enhance the Performance of a Solar Photovoltaic Panel,” in 2021 International Conference on Science & Contemporary Technologies (ICSCT), Dhaka, Bangladesh: IEEE, Aug. 2021, pp. 1–6. doi: 10.1109/ICSCT53883.2021.9642557.

K. Vidanapathirana, K. Kumarapeli, M. Marasinghe, D. Amarasinghe, and J. Lucas, “Performance Evaluation of a Hybrid Dual-Axis Solar Tracking System,” in 2021 3rd International Conference on Electrical Engineering (EECon), Colombo, Sri Lanka: IEEE, Sep. 2021, pp. 50–55. doi: 10.1109/EECon52960.2021.9580961.

P. T. Le, T. S. Nguyen, and N. P. An Loi, “Solar Energy Potential Assessment: Analytic Hierarchy Process Model for Selecting Solar Energy Sites in Vietnam,” in 2022 6th International Conference on Green Technology and Sustainable Development (GTSD), Nha Trang City, Vietnam: IEEE, Jul. 2022, pp. 155–159. doi: 10.1109/GTSD54989.2022.9989116.

A. Homadi, T. Hall, and L. Whitman, “Using solar energy to generate power through a solar wall,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 7, pp. 470–477, Nov. 2020, doi: 10.1016/j.jksues.2020.03.003.

N. Winanti, B. Halimi, A. Purwadi, and N. Heryana, “Study and Design of Energy-Saving Solar Lamp for Rural Area in Indonesia,” in 2018 2nd International Conference on Green Energy and Applications (ICGEA), Singapore: IEEE, Mar. 2018, pp. 98–102. doi: 10.1109/ICGEA.2018.8356307.

A. H. Almasoud and H. M. Gandayh, “Future of solar energy in Saudi Arabia,” J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, pp. 153–157, Jul. 2015, doi: 10.1016/j.jksues.2014.03.007.

M. H. Bin Ishak, N. Burham, M. Masrie, Z. Janin, and R. Sam, “Automatic Dual-Axis Solar Tracking System for Enhancing the Per-formance of a Solar Photovoltaic Panel,” in 2023 IEEE 9th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia: IEEE, Oct. 2023, pp. 279–283. doi: 10.1109/ICSIMA59853.2023.10373430.

H. Fathabadi, “Novel Online Sensorless Dual-Axis Sun Tracker,” IEEEASME Trans. Mechatron., vol. 22, no. 1, pp. 321–328, Feb. 2017, doi: 10.1109/TMECH.2016.2611564.

M. S, Rajkumar. K, Rajakumar. P, H. P. S M, G. S, and B. M, “Automatic Solar Tracking System,” in 2022 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India: IEEE, Dec. 2022, pp. 1–4. doi: 10.1109/ICPECTS56089.2022.10047670.

M. M. Aji, B. G. Gamiya, A. T. Olomowewe, F. A. Ohikere, S. S. Umar, and S. Thomas, “Design and Simulation of Dual-Axis Solar Tracking Systems,” in 2021 1st International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria: IEEE, Jul. 2021, pp. 1–4. doi: 10.1109/ICMEAS52683.2021.9692361.

N. AL-Rousan, N. A. Mat Isa, and M. K. Mat Desa, “Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 7, pp. 459–469, Nov. 2020, doi: 10.1016/j.jksues.2020.04.004.

S. Bano, U. Tariq, and S. I. A. Shah, “Design and Implementation of Dual-Axis Solar Tracking System for Maximizing the Efficiency of Solar Cells,” in 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE), Islamabad, Pakistan: IEEE, Dec. 2021, pp. 1–11. doi: 10.1109/ICASE54940.2021.9904139.

S. İ. Ulutekin, B. Şahin, G. Kolcubașı, O. Alıç, and A. Zirek, “Performance Comparison of Fixed and Dual Axis Solar Tracking Sys-tems,” in 2023 12th International Conference on Power Science and Engineering (ICPSE), Eskisehir, Turkiye: IEEE, Sep. 2023, pp. 51–54. doi: 10.1109/ICPSE59506.2023.10329299.

K. Srikumar and Ch. Saibabu, “A system and novel methodology to track maximum power from photo voltaic system: A compara-tive and experimental analysis,” J. King Saud Univ. - Eng. Sci., vol. 32, no. 7, pp. 442–458, Nov. 2020, doi: 10.1016/j.jksues.2018.02.006.

M. Ghassoul, “A dual solar tracking system based on a light to frequency converter using a microcontroller,” Fuel Commun., vol. 6, p. 100007, Mar. 2021, doi: 10.1016/j.jfueco.2020.100007.

N. Kuttybay et al., “Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions,” Energies, vol. 13, no. 19, p. 5226, Oct. 2020, doi: 10.3390/en13195226.

P. Munanga, S. Chinguwa, W. R. Nyemba, and C. Mbohwa, “Design for manufacture and assembly of an intelligent single axis solar tracking system,” Procedia CIRP, vol. 91, pp. 571–576, 2020, doi: 10.1016/j.procir.2020.03.109.

A. A. M. Hassan, A. A. Elbaset, A. T. Hasouna, and A. Emad, “Analytical Modelling, Simulation and Implementation of Solar Track-er,” vol. 3, no. 1, 2019.

R. Alfita et al., “Perancangan Solar Tracker Four Axis Berbasis Internet of Things (IoT),” ELKOMIKA J. Tek. Energi Elektr. Tek. Tele-komun. Tek. Elektron., vol. 8, no. 2, p. 404, May 2020, doi: 10.26760/elkomika.v8i2.404.

Y. A. Badamasi, “The working principle of an Arduino,” in 2014 11th International Conference on Electronics, Computer and Compu-tation (ICECCO), Abuja, Nigeria: IEEE, Sep. 2014, pp. 1–4. doi: 10.1109/ICECCO.2014.6997578.

M. Fuentes, M. Vivar, J. M. Burgos, J. Aguilera, and J. A. Vacas, “Design of an accurate, low-cost autonomous data logger for PV sys-tem monitoring using ArduinoTM that complies with IEC standards,” Sol. Energy Mater. Sol. Cells, vol. 130, pp. 529–543, Nov. 2014, doi: 10.1016/j.solmat.2014.08.008.

A. Lopez-Vargas, M. Fuentes, M. V. Garcia, and F. J. Munoz-Rodriguez, “Low-Cost Datalogger Intended for Remote Monitoring of Solar Photovoltaic Standalone Systems Based on ArduinoTM,” IEEE Sens. J., vol. 19, no. 11, pp. 4308–4320, Jun. 2019, doi: 10.1109/JSEN.2019.2898667.

S. A. S. Eldin, M. S. Abd-Elhady, and H. A. Kandil, “Feasibility of solar tracking systems for PV panels in hot and cold regions,” Renew. Energy, vol. 85, pp. 228–233, Jan. 2016, doi: 10.1016/j.renene.2015.06.051.

W. D. Lubitz, “Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels,” Appl. Energy, vol. 88, no. 5, pp. 1710–1719, May 2011, doi: 10.1016/j.apenergy.2010.11.008.

J. F. Lee, N. Abd. Rahim, and Y. A. Al-Turki, “Performance of Dual-Axis Solar Tracker versus Static Solar System by Segmented Clearness Index in Malaysia,” Int. J. Photoenergy, vol. 2013, pp. 1–13, 2013, doi: 10.1155/2013/820714.

D. A. Flores-Hernández, A. Luviano-Juárez, N. Lozada-Castillo, O. Gutiérrez-Frías, C. Domínguez, and I. Antón, “Optimal Strategy for the Improvement of the Overall Performance of Dual-Axis Solar Tracking Systems,” Energies, vol. 14, no. 22, p. 7795, Nov. 2021, doi: 10.3390/en14227795.

M. Angulo-Calderón, I. Salgado-Tránsito, I. Trejo-Zúñiga, C. Paredes-Orta, S. Kesthkar, and A. Díaz-Ponce, “Development and Accu-racy Assessment of a High-Precision Dual-Axis Pre-Commercial Solar Tracker for Concentrating Photovoltaic Modules,” Appl. Sci., vol. 12, no. 5, p. 2625, Mar. 2022, doi: 10.3390/app12052625.

T. Demirdelen, H. Alıcı, B. Esenboğa, and M. Güldürek, “Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate,” Energies, vol. 16, no. 10, p. 4197, May 2023, doi: 10.3390/en16104197.




How to Cite

Pardosi, C.H. et al. 2024. Design and Implementation of A Dual-Axis Solar Tracking System using Arduino Uno Microcontroller. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer. 8, 1 (Jun. 2024), 44–56. DOI: