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ABSTRACT 

Present studies have successfully evaluated psychological properties such as mental health and stress by using 

physiological data from the cardiovascular system. Most studies established specific interventions and ambiguous 

heart rate properties according to homeostatic conditions. We proposed a study evaluating mental stress based 

on daily activities dataset. Twenty-two healthy men were observed in this study. We employed two approaches 

based on the time segments, while extracting the HRV parameters. We discovered that there was no significant 

difference between the parameters corresponding to the daily stress score groups (low- and high-stress) when we 

used whole-day recording in one segment HRV parameter measurement (p > 0.05). However, by extracting the 

HRV parameters based on multi time segments (phases 1, 2, and 3), we found parameters that were able to 

properly distinguish the two groups (low- and high-stress). The frequency domain parameters are the most sensi-

tive features, especially the LF and HF (p < 0.01), followed by the total power (p < 0.05). In the time domain 

measurement, the RMSSD, StdHR, SD1, and SD2 are able to differentiate the participants based on the daily stress 

scores (p < 0.05). As a result, this study proposed that by continually monitoring biological signals based on time 

segment and employing the given parameters, it is possible to appropriately and meaningfully measure the daily 

stress condition for future classification studies. 

  

Keywords: daily stress, heart rate variability, wearable, time segment. 

 

I. INTRODUCTION 

N many countries, including the United States, where mental health remains a significant issue, 

citizens have committed suicide as a result of extreme mental duress, which can occur in a variety 

of professions [1]. Due to the intense problems, researchers have learned and acknowledged a 

significant connection between a person's physical, mental, and psychological health over the past 20 

years [2]. Based on this, numerous stress detection methods are used to prevent future chronic illnesses 

[3]. 

Since detecting stress has become essential, psychological methods have been considered less 

effective since the subjective perspective is unavoidable during the surveys. Studies have suggested that 

it is possible to monitor changes in emotion and stress using electronic devices by attaching them to the 

body as physiological signals with specific sensors [4, 5]. Thus, the next issue is finding the most 

appropriate sensors to represent psychological changes as an objective measurement tool.  

The devices that incorporate the study of objective psychological instrumentation instruments, such 

as HR, ST, GSR, RR, ACC, and BP sensors, are known as wearable sensors, and the studies that apply 

to them are briefly listed [6]. Due to their close connection to the autonomic nervous system, heart rate 

sensors become beneficial in representing rest, physical, and mental states [7, 8]. By utilizing the heart 

rate sensor, extracting the heart rate variability (HRV) features considerably contributes to physiological 

and psychological metrics. Thus, conventional devices are not suitable for wearable and mobile 

purposes. To overcome the issue, wearable devices are considered daily trackers. 

Since the development of wearable technologies and sensors have become important, the issue of 
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daily comfort remains. Today, researchers use commercially available wearables like watches and 

smartphones to monitor these physiological signal activities [9-12]. When the wearable device's comfort 

is attained, its use to monitor daily activities and physiological properties becomes more promising. 

Promising outcomes have been obtained from earlier research on detecting human psychological 

conditions in specific environments. However, based on the current situation, researchers are aware that 

the development of stress detection systems in experimental design studies does not accurately reflect 

the actual human situation, which is highly variable and influenced by daily activities [2]. Research on 

identifying stress and emotions concentrated primarily on the workplace and just for specific times 

initially. However, as time progressed, the focus of this research shifted to identifying emotional changes 

and stress in routine activities, or what we refer to as daily stress [13]. The stimulated or altered 

psychological state does not always reflect a person's natural response and can sometimes have an effect 

on the participants' emotions after the experiment has concluded. For this reason, it is essential to 

conduct research and studies on how a person's mental tension changes as a result of their daily activities, 

and to carefully observe these changes over time.  Validation of this research is still required for further 

investigation, as its limitations still concentrate on recognizing stress at specific times or in specific 

situations, and it can be ambiguous with other bodily conditions or physical activities. 

Previously, a significant amount of research on a person's stress level during a specific short-term 

event focused on physiological signals, which some argue is not a reliable method for measuring stress. 

Specifically, our proposed study aims to determine the physiological response properties, such as the 

heart rate, based on how the changes in the biological signal during a person's daily activities correspond 

to their subjective psychological assessment, which is measured by different extracted features over the 

course of a full day (24 hours). Then, this study must determine if it is possible to use segmentation in 

time series analysis to determine and enhance how stressed a person is at a specific time, based on the 

extracted features, and if so, whether this is possible. We conclude by examining how time-segment 

analysis can be used to classify a person's daily stress so that it can be measured more accurately and 

meaningfully using standard or well-known wearable devices.  

Previous studies continue to focus on identifying stress at specific times or in specific environments, 

and it can be difficult to distinguish stress from other physiological conditions or physical activity. Then, 

we noted that our contributions to the study included 1) using a quantitative method to measure 

physiological properties from a typical wearable device biosensor that correspond to psychological 

changes; 2) identifying the significant HRV parameter(s) to represent daily stress; and 3) verifying an 

efficient pipelining technique to measure daily stress based on time segment analysis on HRV properties 

by using a well-known wearable device on the market. This study significantly contributes to our 

comprehension of how to monitor daily stress using a standard smartwatch or other wearable device, 

which can be integrated into any mobile app by pairing the device via Bluetooth.  

II. RESEARCH METHODS 

A. Dataset 

The research data comes from secondary data under the Open Database License (ODbL) v1.0, an MIT 

Physionet data collection repository, with twenty-two male university students as the participants. The 

data consists of user_info data, peak-to-peak heart rate interval data, questionnaires, and supporting data 

that is produced by the device, such as activity (number of steps) and saliva to measure the biochemical 

properties before and after sleep. All participants were in good health. As this is an exploratory pilot 

study, it was important to seek a sample of subjects that was as homogeneous as possible in order to 

limit inter-individual variables and maintain a small number of subjects [14]. Before the research started, 

the subjects were confirmed to have understood the research procedures, signed informed consent con-

sciously, and understood the research protocol. The research protocol that was carried out complied with 

ethical reviews according to the rules and regulations of the Helsinki Declaration regarding human in-

volvement in this research. 

B. Experimental Design 

The dataset aimed to determine the body's psychological and physiological conditions while 

performing activities for 24 hours (1 day). This dataset was obtained by asking the participants to carry 
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out their daily activities as usual without any specific treatment or intervention. After their daily 

activities, all participants filled out their daily score inventory (DSI) before going to sleep to summarize 

the magnitude of stressful events that they had engaged in during the day. Utilized wearable devices 

continuously recorded all body activities, including cardiovascular activity (heart) and movement 

(accelerometer). For this study, we utilized the dataset to focus only on the heart's activity by 

decomposing the heart rate variability parameters. 

C. Data Acquisition 

Heart activity and body movements, including the number of steps and the body's vector magnitude, 

provide physiological data extracted from the human body. The dataset retrieved data from a common 

wearable device for measuring cardiac activity, the Polar H10, a pulse sensor worn all day without 

interfering with the subject's activities. An actigraph device is utilized for body movements, which is a 

device similar to a smartwatch that records data on a person's pulse rate, number of steps, and vector 

magnitude for body movements over a specified period. Bluetooth connectivity was used to attach each 

of these tools to mobile devices. However, this study focused on the cardiac rhythm properties, as they 

reflect the autonomic nervous system and correspond to the stress state. The dataset collected data for 

24 hours, beginning with morning routines and ending before bedtime. As the main raw data, we 

extracted each participant's peak-to-peak interval time series from the dataset. The detailed schema of 

data acquisition can be found in Figure 1. 

D. Signal Processing and Features Extraction 

The signal obtained has been recorded and extracted in CSV format. The Polar H10 device generated 

the RR interval time series data, which is the time interval between two consecutive heart rate peaks in 

seconds. For Polar H10 data, the extracted features were Heart Rate Variability (HRV) time domain 

parameters, which included linear and non-linear data features. The linear features consisted of MeanRR 

(ms), SDRR (ms), NN50, pNN50 (percentage), RMSSD (ms), MeanHR (beats per minute), and StdHR 

(beats per minute) parameters. As for the non-linear parameters, the extracted parameters were SD1 

(ms), SD2 (ms), SD ratio (SDrat), and elliptical area (Ellip_area) (ms2). In addition to time-domain 

analysis, we also demonstrated frequency-domain analysis that includes very low frequency (VLF; 

ms2/Hz), low frequency (LF; ms2/Hz), high frequency (HF; ms2/Hz), LFHF ratio (LFHFrat), and total 

power (ms2/Hz) [15]. As depicted in Figure 1, we illustrated the procedures. 

 
Figure 1. Data acquisition and features extraction schema 
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E. Daily Stress Inventory (DSI) 

As a subjective evaluation, we used a daily stress inventory (DSI) from the dataset to assess the daily 

stress score of each participant throughout the day. The daily stress assessment used a 58-question daily 

stress questionnaire as a self-report assessment after 24 hours of activity. The scoring system uses a 

Likert scale of 1 (not stressed) to 7 (stress or panic), with a total accumulated score of all questions 

ranging from 0 to 406. The higher the score, the higher the daily stress experienced [14]. The complete 

DSI questionnaire is already attached to the attachment of this manuscript. 

F. Data Analysis 

Even though the data was collected from 22 participants, it did not meet the normal distribution. Since 

it did not come from a normal distribution, the statistical tests use non-parametric techniques. We 

employed the Kruskal-Wallis test to analyze the heart rate variability parameters based on group stress 

and time-segment factors to investigate any significant difference between the low and high daily stress 

groups. All data analysis techniques used a 95% confidence level (p-value of 0.05), where we called the 

data significantly different from the groups if the p-value was less than 0.05. We performed the single 

and multi-time segments for analysis purposes. Initially, we focused on the regular analysis that utilized 

the whole data recording as the primary scenario of data being recorded. 

The single time-segment analysis was conducted from 9:00 a.m. to 9:00 p.m. before bedtime. The 

multi-time segment analysis was performed in the same time interval and separated into three segments: 

before lunch (phase 09.00 a.m.-12.00 p.m.), after lunch or the second phase working hours (01.00 p.m.-

04.00 p.m.), and before bedtime (05.00 p.m.-09.00 p.m.). In addition, we conducted a correlation 

analysis to determine the connection between heart rate variability analysis and daily stress assessment. 

III. RESULTS 

A. Daily Stress Assessment 

We divided the stress score into two groups based on the scores obtained after using the daily stress 

assessment for everyday activities based on the median data of the daily stress inventory analysis [14]. 

Figure 2 shows that twelve of the 22 participants had daily stress levels greater than 30, indicating that 

the subject felt stressed while performing regular tasks. Subjects were considered less stressful if their 

daily stress score was less than 30. The findings showed that roughly half of the individuals encountered 

the stressor while engaging in daily activities. Based on the stress level, the data were deemed balanced. 

B. Peak-to -peak Interval Time Series Characteristic 

By utilizing the physiological data obtained by the wearable device, we obtained their heart rate 

variability data by extracting the peak-to-peak interval from the heart rate (RR interval time series). We 

visualized the RR interval time series between subjects during the high- and low-stress scoring 

assessments to initiate the insight. Figure 3 shows that the RR interval's variance is lower during high-

 
Figure 2. The daily stress inventory assessment score from the overall subjects 
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stress compared to the low-stress condition. During high stress, the RR interval's changes are between 

0.6 and 0.8 seconds. Thus, the RR interval's changes during low stress are between less than 0.6 and 0.9 

 
(a) 

 

 
(b) 

Figure 3. The comparison between subjects who had a lower and higher stress level: (a) The peak-to-peak interval time series (RR inter-
val); (b) the power spectral density in the frequency domain 
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seconds. According to the findings, high stress causes a low RR interval time series, which means the 

heart rate beats faster than under low stress. 

When we carefully observed the RR time series, we found that the time series variance or the 

variability data differed between the low- and high-stress participant. The component frequency can be 

seen in Figure 3, where a high-stress participant had a lower frequency component, whereas the low-

stress had a higher one. Instead, a high-stress participant's very low frequency is also lower than the 

low-stress subject. 

C. Single Time-Segment Analysis 

As shown in Table 1, we present the single time-segment analysis of the features extracted from the 

overall data from the beginning to the end of data collection (09.00 a.m. – 09.00 p.m.). We focus on 

linear analysis using time domain analysis first. Based on the mean values of all individuals, the heart 

rate is comparable under low and high-stress levels. When under high stress (808.3226 ms), the MeanRR 

is marginally higher than when under low stress (806.1854 ms), having a marginally smaller impact on 

the heart rate's beats per minute. Regardless, the features derived from the variance or deviation of the 

RR interval time series data plainly distinguish between high and low stress. As can be seen, the 

percentages differ between the two levels of stress and are 9 to 10% lower in the high stress condition. 

The SDRR, RMSSD, and StdHR show that the variation of RR interval properties is completely lower 

between those two conditions, especially the SDRR and RMSSD were lower in high-stress participants. 

The SDRR and RMSSD differentiate between high- and low-stress daily assessments, which were 

around 11.1316 and 27.062 ms, respectively. During low stress, the standard deviation of the heart rate 

is slightly higher, but it does not exceed one beat per minute. In addition, the NN50 and pNN50 represent 

the number and proportions of the RR interval with a value greater than 50 ms are lowers in the high-

stress group.  

According to the frequency decomposition, most frequency components are lower in the high-stress 

condition compared to the low-stress condition. The lower frequency components (VLF and LF) have 

more than 100 ms2/Hz higher differences, whereas the high frequency (HF) shows the highest difference, 

which is more than 1000 ms2/Hz. Based on that, sympathetic activity is affected during stressful 

conditions. 

 Additionally, we demonstrated the nonlinear analysis that calculates the geometrical properties of 

RR interval time series (SD1 and SD2). Because the features' characteristics are identical to the variation 

of the RR time series in the linear method, the properties had similar tendencies, with SD1 and SD2 

being higher during high stress. The SD1 had a lower value (44.2919 ms) in the subjects with high-stress 

TABLE 1 
PHYSIOLOGICAL PROPERTIES BETWEEN LOW AND HIGH STRESS USING A SINGLE TIME SEGMENT (09.00 A.M. – 09.00 P.M.) 

Parameter 
High Stress Low Stress 

Mean SE Mean SE 

Linear Analysis: Time Domain 

MeanRR (ms) 808.3226 18.0773 806.1854 22.6981 
SDRR (ms) 172.1650 7.7873 183.2966 14.7385 

NN50 13735.3333 1575.5983 15156.8500 2176.5363 

pNN50 (%) 17.1771 1.8232 19.2909 3.1594 
RMSSD (ms) 62.6382 6.3494 89.7002 32.1799 

MeanHR (bpm) 78.8446 2.2515 79.5154 2.4539 

StdHR (bpm) 19.8257 2.0436 20.7586 2.0379 
Linear Analysis: Frequency Domain 

LF (ms2/Hz) 1988.3882 192.8258 2532.2421 715.8425 
HF (ms2/Hz) 908.2172 154.4051 2769.2522 2478.7103 

LFHFrat 2.8255 0.4222 2.3960 0.4453 

LFnu 70.6674 2.6856 66.1963 4.1206 
HFnu 29.3326 2.6856 33.8037 4.1206 

TotPow (ms2/Hz) 4774.1035 392.9658 7326.6289 3442.4176 

VLF (ms2/Hz) 1877.4982 109.5240 2025.1345 282.5244 
Time Domain: Non-Linear Analysis 

SD1 (ms) 44.2919 4.4897 63.4276 22.7547 

SD2 (ms) 238.8492 11.1705 246.3502 13.3353 
SDrat 6.1146 0.6967 5.5008 0.8178 

Ellip_area (ms2) 33251.7484 3672.8274 53481.6267 24735.3316 

 



Jurnal ELTIKOM:  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

110 

daily scores compared to the lower one (63.4276 ms). The ratio between SD2 and SD1 is slightly higher 

under high stress compared to low stress. By utilizing the SD1 and SD2 values, we also calculated the 

elliptical area (ellipse_area). Obviously, people with a higher daily stress score represent a 38% lower 

elliptical area than those with lower scores. 

 Finally, we employed a statistical test between the two groups. We found no significant differences 

between the groups using the previously extracted features. As a result, we concluded that the 

measurement of overall heart rate variability features in a one-day time segment could not represent 

mental stress changes during daily activities (p > 0.05). Thus, we demonstrated the multi-time-segment 

analysis (phases 1, 2, and 3) to broaden our findings. 

D. Multi Time-Segment Analysis 

When the entire set of daily data was compared to the daily stress score, there was no difference 

between the stress and non-stress conditions (p > 0.05). We extracted the heart rate variability based on 

TABLE 2 

PHYSIOLOGICAL PROPERTIES USING MULTI TIME-SEGMENT - PHASE 1 (9.00 A.M. TO 12.00 P.M.) 

Parameters 

Phase 1 (09.00 a.m. - 12.00 p.m.) 

Low High 

Mean SEM Mean SEM 

Linear Analysis: Time Doman 

MeanRR (ms) 753.8494 20.9301 752.9757 27.2462 
SDRR (ms) 129.0765 20.6378 101.0621 5.7438 

NN50 2363.6000 516.0530 1612.0833 252.1246 

pNN50 (%) 18.0562 4.0651 13.6383 2.7687 
RMSSD (ms) 101.7647 39.1280 56.2636 7.1293 

MeanHR (bpm) 82.6021 1.7687 82.5727 2.9303 
StdHR (bpm) 15.2828 1.1187 13.2042 1.2412 

Linear Analysis: Frequency Domain 

LF (ms2/Hz) 3059.4835 961.7391 1727.7687 203.5162 
HF (ms2/Hz) 3818.2910 2875.1836 693.5721 144.4575 

LFHFrat 2.7496 0.5288 3.7445 0.6750 

LFnu 67.4713 5.2936 74.3777 3.2128 
HFnu 32.5287 5.2936 25.6223 3.2128 

TotPow (ms2/Hz) 8730.3817 4233.7402 4033.8992 384.5834 

VLF (ms2/Hz) 1852.6072 410.6654 1529.2251 165.1358 
Time Domain: Non-Linear Analysis 

SD1 (ms) 71.9585 27.6676 39.7844 5.0412 

SD2 (ms) 161.5687 17.6572 136.5704 7.5786 
SDrat 3.4714 0.5474 3.9578 0.4613 

Ellip_area (ms2) 47230.7584 25757.6893 17796.7562 3098.6018 

\ 

TABLE 3 

PHYSIOLOGICAL PROPERTIES USING MULTI TIME-SEGMENT - PHASE 2 (1:00 P.M.– 4:00 P.M.) 

Parameters 

Phase 2 (01.00 p.m. - 04.00 p.m.) 

Low High 

Mean SEM Mean SEM 

Linear Analysis: Time Doman 

MeanRR (ms) 753.4009 25.7220 754.7852 27.3677 

SDRR (ms) 132.3879 22.3689 109.4473 5.9591 
NN50 4871.7000 1066.6439 3407.5000 560.1314 

pNN50 (%) 18.0302 4.4570 13.2267 2.5428 

RMSSD (ms) 105.5826 43.7918 54.0254 5.8603 

MeanHR (bpm) 83.0739 2.2843 82.5787 2.9801 

StdHR (bpm) 15.9211 1.1969 13.7213 0.9389 
Linear Analysis: Frequency Domain 

LF (ms2/Hz) 3067.9929 975.1824 1719.5969 163.9203 

HF (ms2/Hz) 4176.4570 3244.1516 638.2639 105.3322 
LFHFrat 2.6668 0.4673 3.4957 0.5497 

LFnu 67.5073 5.2563 74.1266 2.8882 

HFnu 32.4927 5.2563 25.8734 2.8882 
TotPow (ms2/Hz) 9075.8821 4593.7336 3859.1900 347.0084 

VLF (ms2/Hz) 1831.4322 401.0520 1501.3292 163.8958 

Time Domain: Non-Linear Analysis 
SD1 (ms) 74.6582 30.9655 38.2017 4.1439 

SD2 (ms) 164.5720 17.5357 149.5174 8.1593 

SDrat 3.5992 0.5518 4.4210 0.5014 
Ellip_area (ms2) 51636.5292 30068.6256 18561.4364 2847.2135 
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time segments into three phases: phase 1 (09.00 a.m.–12.00 p.m.), phase 2 (01.00 p.m.–04.00 p.m.), and 

phase 3 (05.00 a.m.–09.00 a.m.). We grouped the extracted features based on the multi time-segment 

corresponding to the daily stress inventory scores. The results can be summarized in Tables 2, 3, and 4. 

 In general, Tables 2, 3, and 4 demonstrate that the time domain analysis using both linear and non-

linear results is greater, whereas the daily stress evaluation yields a low stress condition as opposed to a 

high stress condition. We were also able to observe the same trend in frequency domain analysis. As we 

can see in Tables 2, 3, and 4, the tendency strongly shows the same properties, where the heart variability 

parameters were lower in the high stress daily score group compared to the lower stress level assessment 

results.  

The linear time-domain HRV parameters show a 20–50% difference in categorizing low- to high-

stress daily scores. The non-linear time domain analysis, on the other hand, yields at least a 40% 

difference between low and high stress on the SD1 parameter. In the frequency domain analysis, the 

high-frequency components show a big difference, more than 80% of the percentage decrease. In 

TABLE 4 

PHYSIOLOGICAL PROPERTIES USING MULTI TIME-SEGMENT - PHASE 3 (5.00 P.M.–09.00 P.M.) 

Parameters 

Phase 3 (05.00 p.m. - 09.00 p.m.) 

Low High 

Mean SEM Mean SEM 

Linear Analysis: Time Doman 
MeanRR (ms) 757.9977 28.7026 740.9159 21.7175 

SDRR (ms) 145.0982 21.4723 122.3943 13.7073 

NN50 7532.7000 1495.1191 4963.4167 758.3917 
pNN50 (%) 18.3999 4.3530 11.9282 1.9958 

RMSSD (ms) 109.0497 45.2958 50.9604 4.8841 

MeanHR (bpm) 83.2907 2.8357 84.9186 2.7679 
StdHR (bpm) 17.3870 1.3814 16.6475 2.7538 

Linear Analysis: Frequency Domain 
LF (ms2/Hz) 3107.6685 996.1253 1647.8823 175.6088 

HF (ms2/Hz) 4435.5138 3454.4195 571.3710 80.1594 

LFHFrat 2.5620 0.4618 3.5885 0.5608 
LFnu 66.5416 5.3009 74.7117 2.7742 

HFnu 33.4584 5.3009 25.2883 2.7742 

TotPow (ms2/Hz) 9395.9262 4814.4764 3643.0710 315.4667 
VLF (ms2/Hz) 1852.7439 391.0585 1423.8177 141.6251 

Time Domain: Non-Linear Analysis 

SD1 (ms) 77.1098 32.0290 36.0345 3.4536 
SD2 (ms) 182.3732 14.7743 168.8011 19.4664 

SDrat 3.9168 0.5803 5.0677 0.6230 

Ellip_area (ms2) 56695.9950 31832.5279 19702.4382 3122.5311 

 

 
Figure 4. The distribution and mean value of physiological measurements in the groups with low and high-stress daily scores 
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addition, low frequency represents a 40–50% decreasing percentage. The total power also shows a 

decline from low to high stress (a 50–60% difference) from the three phases of heart rate variability 

observation. In contrast, the ratio between low frequency and high frequency components indicates that 

the low stress group is inferior to the high stress group. 

 On the basis of physiological measurements, the Kruskal-Wallis test was developed to determine 

the degree to which various groups of daily stress and phases differ from one another. While using the 

entire data set (one segment features) to differentiate between low and high tension, no evidence of a 

statistically significant difference was found (p > 0.05). The multivariate analysis shows that the time 

segments or phases are not affecting the difference between low- and high-stress groups where the p-

value of all HRV features is 0.5 - 0.9. Based on the daily stress inventory assessment, there is a 

significant difference in utilizing the time segments only regarding the stress group. When we separated 

the measurements by the three phases of time, we found that the RMSSD (p = 0.0432), StdHR (p = 

0.0211), LF (p = 0.0012), HF (p = 0.0089), total power (p = 0.0242), SD1 (p = 0.0432), and elliptical 

area (p = 0.0473) were all different in a statistically significant way, as shown in Figure 4. The most 

significant difference came from the two frequency components, LF and HF, where the p-value was less 

than 0.01. Therefore, we found that frequency components were superior to time domain components 

for defining low and high stress using time-segment physiological measurements. In addition, the time-

segment measurement is better than summarizing the daily measurement to identify the stress level. In 

addition, we cannot find any interaction between the time-segment factors and the factors that 

differentiate low- and high-stress scores. 

E. Correlation between physiological and psychological assessment 

We employ the correlation between each time segment and overall HRV features with the daily stress 

inventory scores. Not only during a single time segment, but also during multi-time segment analysis in 

phase 3, we observed the same characteristic and trend. As depicted in Figure 5, the number of pairs of 

successive N N (R-R) intervals that differ by more than 50 ms negatively correlated with daily stress 

inventory scores. Using the single time segment, the NN50 correlated with a daily stress score of -0.498 

(p = 0.0181). In addition, the multi-time-segment indicates that phase 3 (05.00 p.m. - 09.00 p.m.) shows 

a similar tendency with a correlation value of -0.479 (p = 0.0241). According to the correlation results, 

the NN50 shows that the higher daily stress scores increase the heart rate rhythm, represented by the 

lower NN50 portion. It shows us that the fewer pairs detected mean higher stress occurred. During the 

multi-time-segment analysis, only the last time-segment (phase 3) likely affected the scores intensively.  

IV. DISCUSSION 

This study was proposed to evaluate daily stress assessment using a well-known wearable device 

(smartwatch and chest strap) as an objective stress detection instrument. This study aims to determine 

if it is possible to evaluate stress using daily stress without intervention or in the laboratory in order to 

detect psychological changes. As the essential basis for future research, we discovered that segment time 

 
Figure 5. The correlation analysis between HRV parameter (NN50) and the daily stress score 
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analysis could distinguish stress levels based on physiological data. 

According to the most recent evaluations of how wearable sensors and machine learning can be used 

to detect mental tension [15], most studies prefer to employ laboratory settings over real-world daily 

activities. Hence, using wearable devices to track users' everyday activities is the greatest approach to 

learn about daily stress and other physical activities [18]. One of the few publicly available datasets for 

this type of investigation was the 24-h multi-level physiological responses dataset, which was employed 

in the proposed study [14]. 

Stress detection is now widely acknowledged as a vital component of the "fight-or-flight" response. 

The sympathetic nervous system's "fight-or-flight response" occurs when it releases more cortisol, 

adrenaline, and noradrenaline in response to a stressor [16]. This survival mechanism enables 

individuals to respond swiftly to difficult or life-threatening situations. Our study revealed that high-

stress subjects generated less band power at a lower frequency than low-stress subjects. Most studies 

found that short-term sympathetic activity is hyper-activated and low parasympathetic activity, which 

is characterized by a decrease in the high-frequency band and an increase in the low-frequency band, 

according to the meta-analysis on HRV to detect mental tension [17]. Throughout the entire day of 

recording, we discovered that the low frequency is the most distinguishing factor between low- and 

high-stress individuals. In comparison to the low-stress participant, the high-stress participant tends to 

have a lower spectrum in low frequency and high frequency. Consequently, future research must still 

improve and validate the findings, predominantly in terms of how the task and time segments were 

utilized.  

According to the majority of evaluations using heart rate variability parameters, the heart rate is the 

most frequently reported feature to reflect mental stress changes, with 18 reports of it increasing during 

stress. It is followed by the RR interval, SDNN/SDRR, RMSSD, NN50, pNN50, total power, and high 

frequency, which decrease during stress [4]. Our proposed investigation confirmed that, based on the 

previous studies, the features used for HRV analysis are still valid [24, 25]. Our proposed study 

concurred that substantial variations and novelty were discovered based on those measures during time 

segments. On the other hand, we also observed a rise in the low frequency and the low-to-high frequency 

ratio. 

How long and how accurately it takes to do mental stress detection is another crucial factor to consider 

[19]. The length of time that the smartwatch records your heart rate is, in our opinion, the most essential 

aspect of accuracy. However, studies have demonstrated that it takes at least 5 to 10 minutes to discern 

stress with an accuracy of greater than 90%. This is contrary to the fact that most wearable devices detect 

stress in a very short amount of time [20, 21]. We found that various time-segments, or the amount of 

time it takes to analyze the heart rate variability data, can offer various indicators of importance between 

low and high stress.  Previous studies reported that to decompose frequency components from the heart 

variability, one also needs to consider the time segments of recording, such as low-frequency from 5 

minutes to 24 hours or high-frequency that can be achieved only for a few minutes of recording [22, 

23]. 

We were able to successfully verify the validity of the duration, and we agree that it must be taken 

into consideration again when using wearable technology to detect everyday stress, particularly when 

putting the devices to use. Therefore, the difficulty of this study is figuring out how to subjectively 

determine the stress condition with varied time segments for future investigations. 

V. CONCLUSION 

We formulated several questions that need answers from this study. The main query of this study is 

the possibility of differentiating between low and high-stress conditions with various heart rate 

variability parameters based on time segments. We discovered that using all physiological 

measurements in one day (one segment) could not distinguish between low and high-stress conditions 

(p > 0.05). However, we found that by segmenting the time or duration to extract the parameters (three 

segments: phases 1, 2, and 3), we were able to distinguish the two stress levels (low- and high-stress). 

We also confirmed that the crucial features are the RMSSD, StdHR, LF, HF, total power, SD1, and 

elliptical area, as reported in previous studies (p < 0.05), and the higher stress increase in the heartbeat 
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rhythm based on the correlation analysis (r ≈  −0.5, 𝑝 < 0.05). However, another question remains 

regarding the best duration for accurately detecting daily stress and how to evaluate it subjectively. We 

believe that the question should be answered with future studies. 

APPENDIX 

Scales 1 to 7, they are 1: occurred but was not stressful, 2: caused very little stress, 3: caused a little 

stress, 4: caused some stress, 5: caused much stress, 6: caused stress very much, 7: caused me to panic. 
1. Performed poorly at task 30. Thought about the future 

2. Performed poorly due to others 31. Ran out of food/personal article 

3. Thought about unfinished work 32. Argued with spouse/boyfriend/girlfriend 
4. Hurried to met deadline activity 33. Argued with another person 

5. Interrupted during task/ 34. Waited longer than you wanted 

6. Someone spoiled your completed task 35. Interrupted while thinking/relaxing 
7. Did something you are unskilled at 36. Someone “cut” ahead of your in a line 

8. Unable to complete a task  37. Performed poorly at sport/game 

9. was unorganized 38. Did something that you did not want to 
10. Criticized or verbally attacked 39. Unable to complete all plans for today 

11. Ignored by others 40. Had car trouble 

12. Spoke or performed in public 41. Had difficulty in traffic 
13. Dealt with rude waiter/salesperson 42. Money problems 

14. Interrupted while talking 43. Store lacked a desired item 
15. Was forced to socialize 44. Misplaced something 

16. Someone broke a promise 45. Bad weather 

17. Competed with someone 46. Unexpected expenses 
18. Was stared at 47. Had confrontation with an authority figure 

19. Did not hear from someone you expected to hear from 48. Heard some bad news 

20. Experienced unwanted physical contact 49. Concerned over personal appearance 
21. Was misunderstood 50. Exposed to feared situation or object 

22. Was embarrassed 51. Exposed to upsetting TV show, movie, book 

23. Had your sleep disturbed 52. “Pet peeve” violated 
24. Forgot something 53. Failed to understand something 

25. Feared illness/Pregnancy 54. Worried about another’s problems 

26. Experienced illness/physical discomfort 55. Experienced narrow escape from danger 
27. Someone borrowed something without your permission 56. Stopped unwanted personal habit 

28. Your property was damaged 57. Had problem with kid(s) 

29. Had minor accident 58. Was late for work/appointment 
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