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ABSTRACT 

This paper addresses the challenges of optimizing environmental conditions in hydroponic farming by integrat-

ing an Intelligent Fuzzy Logic-Controlled IoT System. The research problem lies in the inefficiency of traditional 

hydroponic monitoring systems, particularly in maintaining ideal conditions for plant growth while minimizing 

resource waste. This study aims to develop a system that leverages IoT technology and fuzzy logic to monitor and 

automate hydroponic processes more efficiently. Using sensors, the system continuously tracks key environmental 

parameters such as temperature, humidity, soil moisture, pH levels, and total dissolved solids (TDS). A fuzzy logic 

controller (FLC) triggers actions based on predefined rules. During testing, the system showed effective perfor-

mance—for example, activating fans when temperature (31.2°C) and humidity (60%) indicated a need for cooling, 

and adjusting nutrient levels when pH (5.8) and TDS (450 ppm) were suboptimal. The system offers practical 

benefits through real-time adaptation using defuzzification and aggregation, ensuring precise resource control, 

improving efficiency, and reducing waste. This study highlights the system's potential to support sustainable agri-

culture by providing scalable solutions that enhance plant growth and optimize resource use, especially for small-

scale farmers and urban farming initiatives. 

  

Keywords: fuzzy logic control, hydroponic automation, IoT system, plant monitoring, sustainable agriculture. 

 

I. INTRODUCTION 

NDONESIA’S rapidly growing population, projected to reach 297.5 million by 2045, presents serious 

challenges for food security, especially as agricultural land continues to be converted for industrial 

and residential use. As of 2016, irrigated rice fields declined by 0.47% annually, signaling a 

troubling loss of farmland [1]. Additionally, about 30% of Indonesia’s total land area is classified as 

non-productive, further worsening the food security issue [2]. Although the Indonesian government has 

introduced agrarian reforms, these efforts have not yet succeeded in reversing the ongoing reduction of 

agricultural land [3]. 

This study addresses the challenge of maintaining food security amid decreasing farmland and the 

urgent need for more sustainable, space-efficient farming practices. Hydroponic farming, which uses 

mineral nutrient solutions in water instead of soil, offers one promising alternative. It enables efficient 

crop cultivation in limited spaces, making it especially suitable for urban settings. Hydroponics also 

promotes sustainability by optimizing the use of space and resources [4][5]. The increasing demand for 

hydroponically grown vegetables, driven by higher income levels and growing health awareness, further 

supports the adoption of this method [6]. 

However, hydroponic systems require careful control of environmental variables such as temperature, 

humidity, pH, and nutrient levels. These requirements can be labor-intensive and demand a high level 

of expertise [7]. This study explores the integration of automated monitoring and control systems using 

Internet of Things (IoT) technology to address these challenges. By employing IoT sensors and 
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microcontrollers, the system can transmit real-time data to support more efficient hydroponic farming 

operations [8][9]. Such systems are capable of monitoring and regulating key parameters—pH, 

temperature, humidity, and nutrient concentration—that are critical for optimal plant growth [10][11]. 

The contribution of this study lies in the development of an intelligent IoT system integrated with 

fuzzy logic to improve the adaptability and efficiency of hydroponic farming. Recent advances in IoT 

and Artificial Intelligence (AI) have enabled the use of fuzzy logic controllers to manage the inherent 

uncertainties in agricultural environments, supporting more precise and adaptive decision-making 

[12][13]. This system can greatly reduce human error and enhance the accuracy of nutrient delivery, 

leading to healthier crops and improved yields [14]. The novelty of this study lies in its application of 

these technologies within the Indonesian agricultural context, where combining IoT and fuzzy logic 

offers scalable solutions for small-scale and urban farmers while addressing the increasing demand for 

sustainable farming practices. 

In conclusion, this study presents an innovative approach to the challenges brought about by rapid 

population growth and shrinking agricultural land in Indonesia. By harnessing the potential of IoT and 

fuzzy logic in hydroponic systems, the research contributes to improving agricultural efficiency, 

strengthening food security, and promoting sustainable regional development. 

II. RESEARCH METHOD 

The integration of advanced control systems in hydroponic farming has become increasingly 

important to meet the demands of precision agriculture, particularly in managing critical environmental 

parameters such as pH, temperature, and humidity. Traditional manual control methods are often labor-

intensive, prone to human error, and ineffective in consistently maintaining optimal growing conditions 

[15]. While recent studies have introduced automated solutions, gaps remain in adaptability, scalability, 

and resource efficiency. Table 1 compares the performance of existing systems with the proposed 

approach, emphasizing key improvements in real-time monitoring and control. 

To address these limitations, this research adopts an Intelligent Fuzzy Logic-Controlled IoT System 

as the foundation for an automated and efficient hydroponic monitoring solution, as illustrated in the 

system design diagrams in Figure 1. The system integrates various sensors with an ESP32 development 

board to monitor essential environmental parameters, including temperature, humidity, and soil 

moisture, as well as water pH and nutrient concentration. The sensors used include a DHT sensor, a 

capacitive soil moisture sensor, a pH meter, and a TDS meter. These sensors transmit real-time data to 

a Fuzzy Logic Controller (FLC), which processes the inputs based on predefined rules. 

Fuzzy logic is particularly suitable for hydroponic systems due to its ability to interpret imprecise or 

uncertain data [18]. The FLC operates through a rule-based approach that effectively controls key 

variables such as pH, temperature, and humidity [19], ensuring optimal growing conditions for plants. 

The fuzzy logic process consists of three key stages: fuzzification, inference, and defuzzification [20]. 

TABLE 1 

COMPARATIVE ANALYSIS OF HYDROPONIC MONITORING SYSTEMS 

System Control Method Accuracy (pH/Temp) Latency 
Resource 

Efficiency 
Key Limitations 

PID-based [16] Proportional-Integral-Derivative ±0.5 pH / ±2°C 5–10 s Moderate Static thresholds, no IoT 

Rule-based [17] Fixed thresholds ±0.3 pH / ±1.5°C 3–5 s Low Inflexible to environmental shifts 
ANFIS [5] Adaptive neuro-fuzzy ±0.25 pH / ±1°C <2 s High High computational cost 

Our System Fuzzy Logic + IoT ±0.2 pH / ±1°C <2 s High None (balanced performance) 

 

 
Figure 1. System Design Diagrams. 
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Each stage plays a vital role in converting sensor data into actionable commands for the system’s 

actuators. 

A. Fuzzification 

Abstracts should be explained at the beginning of the manuscript. The abstract section must clearly 

state the research's background, problems, objectives, results, and conclusions. The Introduction section 

must explicitly state the problem, update, and research objectives. The introduction must also be 

equipped with state-of-the-art research accompanied by the latest primary library sources. 

Fuzzification is the process of converting crisp (exact) input values from sensors into fuzzy values 

using membership functions. These functions classify input data into linguistic terms such as “low,” 

“normal,” or “high,” which represent specific value ranges [15]. For example, fuzzification of pH sensor 

data is carried out using a triangular membership function, as shown in (1). Where x is the input value 

(e.g., pH level) and a,b,c are parameters defining the triangular function. 

Membership functions determine how input values are mapped to degrees of membership (ranging 

from 0 to 1) for each linguistic category. Common shapes for these functions include triangular, trape-

zoidal, and Gaussian [21]. In the case of pH levels, the triangular membership function may define the 

categories as follows: "Low" (pH < 5.5): Triangular function with range [4.0, 5.5]; "Normal" (5.5 ≤ pH 

≤ 6.5): Triangular function with range [5.5, 6.5]; and "High" (pH > 6.5): Triangular function with range 

[6.5, 8.0]. 

B. Inference 

In the inference stage, fuzzy IF-THEN rules are applied to determine appropriate control actions based 

on the fuzzified inputs. These rules are typically derived from expert knowledge or empirical data and 

help map input conditions to output responses [22]. 

The most widely used inference method is the Mamdani approach, introduced by Mamdani and As-

silian in the 1970s. It combines linguistic rules from experienced operators, making it well-suited for 

control systems [23]. The Mamdani method uses min-max operations to combine multiple fuzzy rules 

and produce a unified output. The implication function for Mamdani inference is represented in (2). 

C. Defuzzification 

Defuzzification is the final step in the fuzzy logic process, where the fuzzy outputs from the inference 

stage are converted into crisp values that can control actuators—for example, adjusting pump speed or 

LED light intensity. This step is crucial for transforming fuzzy system outputs into actionable commands 

in a hydroponic environment [24]. 

Among various defuzzification techniques, the centroid method is one of the most commonly used. It 

calculates the center of gravity of the output fuzzy set, providing a single crisp value that represents the 

system’s overall decision. The formula for the centroid method is shown in (3) where 𝑦 is the output 

variable and 𝜇(𝑦) is a membership value of 𝑦. 

D. Implementation IoT 

The IoT system in this hydroponic monitoring and automation setup integrates multiple sensors to 

provide real-time environmental data, which is essential for optimizing plant growth. As shown in Fig-

ure 2(a), the two blue barrels likely contain water and nutrient solutions needed for the hydroponic 

system. Positioned above them, IoT components—such as wireless communication devices using Wi-

Fi or Bluetooth—collect and transmit sensor data. This configuration supports remote monitoring and 

𝜇(𝑥) = {

0
𝑥 − 𝑎 𝑏 − 𝑎⁄

𝑐 − 𝑥 𝑐 − 𝑏⁄
0

        

𝑖𝑓 𝑥 ≤ 𝑎
𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏
𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

𝑖𝑓 𝑥 > 𝑐

 (1) 

𝜇𝑜𝑢𝑡𝑝𝑢𝑡(𝑦) = min (𝜇𝑖𝑛𝑝𝑢𝑡(𝑥), 𝜇𝑟𝑢𝑙𝑒(𝑥, 𝑦)) (2) 

𝑦𝑐𝑟𝑖𝑠𝑝 =
∫ 𝑦 ∙ 𝜇(𝑦) 𝑑𝑦

∫ 𝜇(𝑦) 𝑑𝑦
 (3) 
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ensures continuous data flow, enhancing user interaction with the system. Figure 2(b) displays the LCD 

screen showing key environmental readings, such as temperature ("Suhu") and humidity ("Kel. Udara"), 

allowing users to receive immediate feedback on conditions within the hydroponic environment. For 

instance, a temperature of 50.20°C and humidity of 16% provide critical insights into the greenhouse 

atmosphere, enabling timely decision-making. Figure 2(c) presents the system’s monitoring of soil 

moisture ("Kel. Tanah"), with a recorded value of -14. This real-time feedback ensures that the growing 

medium maintains adequate moisture levels. Based on this data, the system can automatically activate 

pumps to regulate water supply, helping maintain optimal conditions for plant growth.  

E. Fuzzy Logic Implementation 

1) Fuzzification 

Fuzzification is a crucial step in converting continuous sensor data from the real world into fuzzy 

values that can be interpreted by the FLC. This process maps sensor readings to linguistic terms using 

predefined membership functions. These functions categorize the sensor data into fuzzy sets such as 

“Low,” “Medium,” or “High.”  

The following outlines the fuzzification process using sample data and fuzzy sets for temperature, 

humidity, soil moisture, pH, and TDS, as visualized in the membership function graphs: 

a. Temperature: the Readings are classified into Cold, Normal, and Hot. As shown in Figure 3(a), 

the fuzzy sets are defined as: “Cold” [0, 15, 20], “Normal” [21, 27, 35], and “Hot” [30, 40, 50]. 

b. Humidity: The categories include Low, Medium, and High, with the fuzzy sets in Figure 3(b) 

defined as: “Low” [0, 40, 50], “Medium” [50, 60, 85], and “High” [70, 90, 100]. 

c. Soil moisture: Data is grouped into Dry, Normal, and Wet, as shown in Figure 3(c). The fuzzy 

sets are: “Dry” [0, 40, 50], “Normal” [50, 60, 85], and “Wet” [70, 90, 100]. 

d. pH level: The fuzzification includes Acidic, Neutral, and Alkaline, as displayed in Figure 3(d). 

The fuzzy sets are: “Acidic” [0, 5, 6.5], “Neutral” [6.5, 7, 8], and “Alkaline” [7.5, 10, 14]. 

e. Total Dissolved Solids (TDS): Readings are classified into Low, Medium, and High. As shown 

in Figure 3(e), the fuzzy sets are: “Low” [0, 400, 600], “Medium” [600, 1000, 1200], and “High” 

[1200, 2000, 2500].  

2) Evaluation of Fuzzy Rules 

After the fuzzification process, the fuzzy logic system evaluates the predefined rules based on expert 

knowledge. These rules specify the optimal conditions for plant growth and determine the necessary 

actions according to the current environmental parameters. The system processes the fuzzified sensor 

data to identify which rules are triggered and then executes the corresponding actions to maintain ideal 

growing conditions. For instance, Rule 1 states: "If the temperature is high and the humidity is low, then 

activate the blower fan." The system evaluates the fuzzified values for temperature and humidity and 

activates the blower fan if the inputs match the fuzzy sets for high temperature and low humidity. Sim-

ilarly, other rules are evaluated based on combinations of sensor readings. 

The system evaluates the fuzzy input conditions for each rule and determines the appropriate actions. 

The degree of membership (μ) is calculated to measure the level of certainty in triggering each response. 

The minimum value among combined input conditions is used to determine the output strength, follow-

ing standard fuzzy logic inference. 

  

   
(a) (b) (c) 

Figure 2. IoT Implementation: (a) Water and Nutrient Reservoirs for the Hydroponic System (b) DHT11 Sensor Display (c) Soil Moisture 
Sensor 
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In Rule 1, where the temperature is high and the system determines that the blower fan should be 

activated, the degree of membership is 0.55, indicating moderate certainty. Rule 2 evaluates low humid-

ity, resulting in a membership degree of 0.8, which reflects substantial certainty in activating the sprayer 

misting system. Rule 6 assesses both acidic pH and low TDS values to determine whether nutrients 

should be added, yielding a high confidence level with a combined degree of membership of 0.815. 

Finally, Rule 8 evaluates an ideal set of conditions for optimal plant growth and returns a degree of 

membership of 0.0, indicating that no action is required under these circumstances. 

3) Aggregation of Fuzzy Outputs 

Once the fuzzy rules are evaluated, the system proceeds to aggregate the fuzzy outputs. In this step, 

the outputs from various rules are combined into a single fuzzy output that represents the final decision 

made by the FLC. This process ensures that multiple conditions—including potentially conflicting 

ones—are considered to determine the most appropriate action for maintaining optimal environmental 

conditions for plant growth. 

For instance, if several rules recommend activating a fan or adjusting nutrient levels, the system ag-

gregates the fuzzy outputs from each relevant rule. The fuzzy membership degree (μ) represents reflects 

the confidence level in each proposed action. These outputs are combined to support a balanced, in-

formed decision. Table 4 presents the aggregated fuzzy outputs for different actions based on the eval-

uated rules. 

The action to activate the blower fan has a membership degree of 0.55, indicating a moderate level of 

certainty. The sprayer misting system has a membership degree of 0.8, reflecting a higher degree of 

confidence. The action to add nutrients has the highest membership degree of 0.815, based on the fuzzy 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3. Fuzzy Membership Functions: (a) Temperature (b) Humidity (c) Soil Moisture (d) pH Level (e) TDS 
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rule evaluations. This aggregation process enables the system to resolve conflicting rules and select the 

most appropriate response. For example, if one rule recommends activating the fan with a membership 

degree of 0.55 and another suggests activating the sprayer misting system with a degree of 0.8, the 

system considers both options and prioritizes the action that best aligns with the current environmental 

conditions. This approach ensures efficient and adaptive operation of the hydroponic system. 

4) Defuzzification 

The final step in the fuzzy logic process is defuzzification, in which fuzzy outputs are converted into 

crisp, actionable values. This step is essential because the system’s actuators require precise signals to 

perform actions such as adjusting fan speed or activating a pump. The fuzzy outputs generated during 

the aggregation stage represent degrees of certainty for various actions. These outputs must be trans-

formed into specific values that the system can execute. 

To clarify how defuzzified values correspond to control actions, Table 4 was previously provided to 

explicitly link defuzzified outputs to actuator commands. That table demonstrates how the centroid-

based defuzzification method converts fuzzy results into actionable signals, ensuring that each member-

ship degree translates into a precise command for system execution. 

Based on the values presented in Table 5, each parameter is fuzzified using the previously defined 

membership functions. The temperature of 35.5°C falls into the “Normal” category, with its degree of 

membership calculated according to the corresponding fuzzy set. The humidity level of 56.0% is clas-

sified under the “Medium” category, while the soil moisture value of 86.5% is categorized as “Wet.” 

The pH level of 5.0 is identified as “Acidic,” and the Total Dissolved Solids (TDS) value of 106 is 

classified as “Low.” 

Based on the fuzzified sensor data presented in Table 5, the system aggregates the fuzzy output values 

for each corresponding action and then calculates a single crisp value using the centroid method, as 

outlined in (3). The fuzzy outputs and their associated degrees of membership and representative values 

are as follows: the Blower Fan has a membership value (μ) of 0.55 with a corresponding output value 

TABLE 2 

RULE BASE  

Condition Action 

High Temperature  Activate Blower Fan  

Low Humidity  Activate Sprayer Misting  

Dry Soil Moisture  Water the Plants  

High Temperature AND Dry Soil Moisture  Water the Plants  

High Temperature AND Low Humidity  Activate Sprayer Misting 

Acidic pH AND Low TDS  Add Nutrients 

Low TDS  Add Nutrients  

Normal Temperature AND Wet Soil AND Humidity Medium AND Neutral pH Neutral AND Medium TDS  Monitoring (Safe)  

 
TABLE 3 

RULE COMBINATION INPUT  

No. Input Condition Output Action Degree of Membership (μ) 

1 Temperature = High  Activate Blower Fan min(0.55) = 0.55 

2 Humidity = Low  Activate Sprayer Misting min(0.8) = 0.8 

3 pH = Acidic AND TDS = Low Add Nutrients min(1.0, 0.815) = 0.815 

4 Temperature = Normal AND Soil Moisture 

= Wet AND Humidity = Moderate AND 

pH = Neutral AND TDS = Medium  

Monitoring (Safe) min(0.0, 0.825, 0.8, 1.0, 0.815) = 

0.0 

 

TABLE 4 

AGGREGATION OF FUZZY OUTPUTS 

No. Action Degree of Membership (μ) Defuzzified Output (x) Action Command 

1 Blower Fan 0.55 4 Activate Blower Fan 

2 Sprayer Misting 0.8 2 Activate Misting 

3 Add Nutrients 0.815 3 Add Nutrients 

 
TABLE 5 

FUZZIFICATION OF ENVIRONMENTAL DATA 

No. Parameter Value 

1 Temperature 35.5°C 

2 Humidity 56.0% 

3 Soil Moisture 86.5% 

4 pH Level 5.0 

5 TDS 106 
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(x) of 4, which is triggered by a high temperature condition; the Sprayer Misting has a membership 

value of 0.8 with an output value of 2, corresponding to low humidity; and the Add Nutrients action has 

a membership value of 0.815 with an output value of 3, indicating that the pH is acidic and the TDS 

level is low. The crisp output is calculated using (3). The result is 2.88. 

The defuzzified value, z = 2.88, falls within the output range for “Add Nutrients” (2–4). Therefore, 

the system determines that the appropriate action is to add nutrients. Since 2.88 is closest to the fuzzy 

output associated with nutrient addition, the corresponding actuator is triggered to deliver nutrients into 

the hydroponic system. 

By defuzzifying the fuzzy outputs, the system generates a clear, actionable value that actuators can 

use to perform precise adjustments. This enhances the overall accuracy of the system and ensures that 

the actions taken are directly aligned with the current environmental parameters and their associated 

fuzzy evaluations, maintaining optimal conditions for plant growth. 

III. RESULTS AND DISCUSSION 

A. Testing 

1) IoT System Performance 

The IoT-based monitoring system was thoroughly tested under various environmental conditions. 

Sensors—including those for temperature, humidity, soil moisture, pH, and TDS—transmitted data in 

real time to the ESP32 board, which was connected to the cloud for remote monitoring. The tests con-

firmed that the sensors consistently provided accurate readings, with only occasional network disrup-

tions affecting data transmission. These disruptions were minor and quickly resolved. 

• Temperature and Humidity: On 2025-01-01 at 12:00 PM, the system recorded a temperature of 

31.2°C and a humidity level of 60%. Designed to respond to such conditions, the system successfully 

 

 

(a) 

 
(b) (c) 

Figure 4. IoT Testing (a) Serial Monitor Output (b) Monitoring Dashboard (c) Mobile App Interface Displaying Real-Time Sensor Data  
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activated the fan. This action was verified through real-time data displayed on the mobile application 

and dashboard interface (Figure 4). The sensor accuracy and the system’s prompt response to cooling 

requirements demonstrate the robustness of the IoT setup in regulating key environmental factors 

critical to plant growth. 

• Soil Moisture and pH Control: Earlier that day, at 7:00 AM, the soil moisture sensor recorded a value 

of 40%, prompting the system to activate the watering mechanism. The pH level was also monitored 

continuously, and when it dropped to 5.8—indicating slight acidity—the system adjusted nutrient 

delivery accordingly. The results show that the IoT system performed reliably in maintaining optimal 

soil moisture and nutrient levels, thereby improving the overall efficiency of the hydroponic system. 

2) Fuzzy Logic System Evaluation 

The fuzzy logic component was thoroughly tested to ensure smooth operation across all stages—

fuzzification, rule evaluation, aggregation, and defuzzification. To evaluate the system’s performance, 

multiple scenarios were simulated by introducing variations in environmental parameters such as tem-

perature, humidity, soil moisture, pH, and TDS. These fluctuations were essential for assessing how the 

fuzzy logic system processed real-time sensor data and triggered appropriate actuator responses, such 

as activating fans or misting mechanisms. Table 6 presents the environmental data used during testing. 

Each entry corresponds to a specific timestamp and records values for temperature, humidity, soil mois-

ture, pH, and TDS (Total Dissolved Solids). These values were input into the fuzzy logic system, which 

then processed the data to generate corresponding outputs. Based on those outputs, the system activated 

the appropriate actuators to maintain optimal environmental conditions.  

Table 7 presents the results of the fuzzification and rule evaluation processes based on the data in 

Table 6. It includes the degree of membership for each environmental parameter—temperature, humid-

ity, soil moisture, pH, and TDS—categorized into linguistic terms such as “Normal,” “Hot,” “Medium,” 

“Dry,” and “Acidic.” These terms represent the fuzzified values for each factor. After the fuzzification 

stage, the system aggregated the fuzzy outputs and performed defuzzification to generate a crisp output 

value, which then guided the system’s decisions. 

TABLE 6 
ENVIRONMENTAL DATA FOR FUZZIFICATION 

No. Timestamps Temperature (°C) Humidity (%) Soil Moisture (%) pH Level TDS (ppm) 

1 2025-01-01T07:00:00 24.5 75 40 6.5 450 

2 2025-01-01T12:00:00 31.2 60 38 5.8 600 

3 2025-01-01T17:00:00 27.8 65 39 6.2 500 

4 2025-01-02T07:00:00 24 76 41 7 350 

5 2025-01-02T12:00:00 30.8 59 37 5.9 650 

6 2025-01-02T17:00:00 27.5 64 38 6.1 480 

7 2025-01-03T07:00:00 24.2 74 42 6.8 430 

8 2025-01-03T12:00:00 31.5 58 37 5.7 600 

 
TABLE 7 

FUZZIFICATION AND RULE EVALUATION RESULTS 

No 

Degree of Membership 
Aggregation of Fuzzy 

Outputs 
Defuzzification Decision 

Temperature Humidity 
Soil 

Moisture 
pH TDS 

1 0.4 

("Normal") 

0.8 

("Medium") 

0.7 

("Dry") 

0.8 

("Acidic") 

0.6 

("Medium") 

Fan: 0.4, Watering: 

0.7, Nutrients: 0.8 

2.8 (Add 

Nutrients) 

Watering 

2 0.9  

("Hot") 

0.75 

("Medium") 

0.6  

("Dry") 

0.85 

("Acidic") 

0.75 

("Medium") 

Fan: 0.9, Watering: 

0.6, Nutrients: 0.85 

3.2 (Add 

Nutrients) 

Add Nutrients 

3 0.7 

("Normal") 

0.7 

("Medium") 

0.65 

("Dry") 

0.75 

("Acidic") 

0.65 

("Medium") 

Fan: 0.7, Watering: 

0.65, Nutrients: 0.75 

2.9 (Watering) Watering 

4 0.4 

("Normal") 

0.85 

("Medium") 

0.75 

("Dry") 

0.6 

("Neutral") 

0.55  

("Low") 

Fan: 0.4, Watering: 

0.75, Nutrients: 0.6 

2.8 (Monitoring) Monitoring 

(Safe) 

5 0.85  

("Hot") 

0.7 

("Medium") 

0.65 

("Dry") 

0.75 

("Acidic") 

0.75 

("Medium") 

Fan: 0.85, Watering: 

0.65, Nutrients: 0.75 

3.2 (Add 

Nutrients) 

Add Nutrients 

6 0.7 

("Normal") 

0.75 

("Medium") 

0.65 

("Dry") 

0.75 

("Acidic") 

0.7 

("Medium") 

Fan: 0.7, Watering: 

0.65, Nutrients: 0.75 

2.9 (Watering) Watering 

7 0.4 

("Normal") 

0.8 

("Medium") 

0.75 

("Wet") 

0.8 

("Neutral") 

0.65  

("Low") 

Fan: 0.4, Watering: 

0.75, Nutrients: 0.8 

2.7 (Monitoring) Monitoring 

(Safe) 

8 0.9  

("Hot") 

0.65 

("Medium") 

0.6  

("Dry") 

0.85 

("Acidic") 

0.75 

("Medium") 

Fan: 0.9, Watering: 

0.6, Nutrients: 0.85 

3.1 (Add 

Nutrients) 

Add Nutrients 
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The results in Table 7 confirm the fuzzy logic system’s reliable performance in managing and con-

trolling environmental conditions. By processing real-time data, the system accurately activated the nec-

essary actions—such as turning on fans, initiating watering, or adjusting nutrient levels—based on the 

aggregated fuzzy evaluations. 

The data shows demonstrate that the fuzzy logic system effectively adapts to varying environmental 

conditions. For instance, when temperature and humidity levels increased—as recorded on 2025-01-01 

at 12:00:00 (temperature: 31.2°C; humidity: 60%)—the system accurately identified the need for nutri-

ent adjustment and activated the fan. Conversely, in more stable conditions, such as those recorded on 

2025-01-02 at 07:00:00 (temperature: 24°C; humidity: 76%; soil moisture: 41%), the system maintained 

a monitoring state, reflecting its capacity to manage non-critical scenarios appropriately. 

The defuzzification process played a vital role in translating fuzzy values into specific control actions. 

For example, on 2025-01-01 at 07:00:00 (temperature: 24.5°C; humidity: 75%; soil moisture: 40%), the 

defuzzified output indicated a need for watering—an essential action for preserving optimal soil mois-

ture levels. 

Overall, the system performed satisfactorily during testing, demonstrating its ability to adapt to a wide 

range of environmental changes. The fuzzy logic controller exhibited high precision in managing actions 

such as watering, cooling, and nutrient regulation, all guided by real-time sensor input and fuzzy infer-

ence. The defuzzification mechanism was particularly effective in converting fuzzy evaluations into 

actionable outputs with minimal error. 

Among the system’s strengths was the seamless integration of IoT sensors with the fuzzy logic con-

troller, enabling efficient real-time monitoring and automated responses. The system showed strong 

adaptability and reliability, accurately responding to dynamic environmental parameters. The applica-

tion of fuzzy logic proved beneficial in handling environmental uncertainty, thereby maintaining stable 

and optimized growing conditions. 

However, some limitations were observed. During IoT testing, minor connectivity issues resulted in 

occasional delays in data transmission between the sensors and the cloud platform. These issues were 

promptly resolved by adjusting network settings and improving the internet connection. Additionally, 

while the fuzzy logic system was generally effective, the rule base could benefit from further refinement. 

Enhancing the rule definitions and logic could improve responsiveness in extreme conditions, such as 

rapid temperature fluctuations, thereby strengthening the system’s overall reliability and performance. 

IV. CONCLUSION 

The IoT-based FLC system for hydroponic plant monitoring and automation has proven to be an 

effective solution for optimizing plant growth conditions. By integrating IoT technology with adaptive 

fuzzy logic, the system continuously monitors key environmental parameters—temperature, humidity, 

soil moisture, pH levels, and TDS—and makes real-time adjustments to maintain optimal growing en-

vironments. This integration enables the system to handle uncertain and dynamic environmental data 

efficiently, ensuring precise control and scalability, which are particularly beneficial for urban farming 

settings. 

Unlike conventional systems, the proposed solution uniquely combines defuzzification with cloud-

based data aggregation, allowing seamless transmission of real-time sensor data to a cloud platform. 

This supports remote monitoring and control via mobile applications, thereby enhancing convenience 

and operational efficiency. The FLC system demonstrated strong performance during testing, accurately 

categorizing sensor inputs through fuzzification and processing them via predefined rules. For instance, 

when the temperature reached 31.2°C and humidity was 60%, the system correctly activated the fan and 

misting system. Similarly, when the pH was slightly acidic (5.8) and TDS was low (450 ppm), the sys-

tem successfully triggered nutrient delivery. 

The system's automation of nutrient dosing and environmental control significantly improved re-

source efficiency, reducing water and nutrient waste. Testing confirmed the system's reliability and ac-

curacy in managing plant growth conditions, as shown by effective responses such as watering at 40% 

soil moisture and nutrient adjustment based on pH and TDS thresholds. 

Future research could explore scaling the system for larger commercial applications, integrating ma-

chine learning for predictive analysis, improving energy efficiency, and designing user-friendly inter-

faces for non-technical users. Overall, the IoT-based FLC system represents a meaningful advancement 

in hydroponic farming technology—offering a reliable, efficient, and sustainable solution to address 
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contemporary agricultural challenges such as food security and land scarcity, while paving the way 

toward smarter, data-driven farming systems. 
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