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ABSTRACT 

Pneumonia remains a major global health concern, particularly affecting young children and older adults, 

contributing to significant morbidity and mortality. Traditional diagnostic methods using chest CT scans are time-

consuming and prone to errors due to the reliance on manual interpretation. This study investigates the application 

of DenseNet architectures DenseNet121, DenseNet169, and DenseNet201—for automated pneumonia detection 

from chest X-ray images. The dataset, obtained from the Guangzhou Women and Children’s Medical Center, 

consists of 5,216 training images and 624 testing images categorized into normal and pneumonia cases. Data 

augmentation techniques, including rotation, normalization, and shear, were applied to improve training effi-

ciency. The DenseNet models were pre-trained on ImageNet and fine-tuned by adding fully connected layers with 

256 neurons and sigmoid activation. The models were trained for 20 epochs using the Adam optimizer and binary 

cross-entropy loss function. Performance evaluation revealed that DenseNet201 outperformed the other models, 

achieving a precision of 0.99 and a recall of 0.61 for normal cases (F1-score of 0.75) and a precision of 0.81 with 

a recall of 0.99 for pneumonia cases (F1-score of 0.89). These findings demonstrate that DenseNet201 provides a 

reliable and effective solution for automated pneumonia detection, offering improved diagnostic efficiency and 

accuracy compared to traditional methods. 
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I. INTRODUCTION 

NEUMONIA is a major global public health issue, leading to severe illness and death [1], [2]. This 

respiratory infection, characterized by inflammation of the air sacs in one or both lungs, can result 

in serious health problems if not promptly and adequately treated [3]. Pneumonia and other lower 

respiratory infections are a major contributor to global mortality [4]. This is especially accurate for 

susceptible demographics, such as youngsters aged five and below and senior individuals aged 65 years 

and above. Pneumonia has a huge impact on global health, affecting millions of people each year and 

resulting in substantial healthcare burdens and economic expenditures [5], [6]. 

Pneumonia continues to be the primary infectious cause of death in children, surpassing other serious 

illnesses like diarrhea and malaria. Every year, millions of children fall victim to this avoidable and 

curable illness. The significant fatality rate among youngsters serves as a clear indication of the urgent 

requirement for efficient measures to prevent, detect early, and promptly treat the condition. Pneumonia 

remains a significant global concern, despite improvements in medical care and the widespread availa-

bility of vaccines [7], [8]. 

The disproportionately high fatality rates in vulnerable groups underscore the critical problem of de-

layed diagnosis and suboptimal treatment outcomes, highlighting the urgent need for more effective 

strategies, such as early and precise identification through diagnostic methods like chest X-rays, lung 

ultrasounds, and molecular diagnostics, to maximize treatment effectiveness and improve patient out-

comes [9], [10], [11]. These tools enable healthcare providers to quickly start appropriate therapeutic 

interventions, ultimately enhancing overall patient care and outcomes. 
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Historically, pneumonia diagnosis has relied on chest radiography and clinical examinations by 

skilled radiologists, but these methods can be subjective, often missing early or subtle signs, leading to 

treatment delays [12], [13]. Factors such as image quality fluctuations, patient placement, equipment 

limitations, and radiologist fatigue further hinder accurate diagnosis, contributing to the risk of misiden-

tification or delayed therapy [12], [14], [15]. To address these challenges, it is crucial to enhance imag-

ing technology, manage radiologist workload, and standardize protocols for data interpretation, while 

exploring cost-effective diagnostic methods suitable for resource-limited settings to improve early and 

accurate detection, ultimately improving patient outcomes [16]. 

Artificial intelligence (AI) has shown great promise in various industries, especially healthcare, by 

providing automated systems that offer significant advantages. These advantages include better accu-

racy in diagnosing conditions, increased efficiency, and the potential to lower healthcare expenses [17]. 

Convolutional Neural Networks (CNNs) are a type of AI approach that has been highly effective in 

analyzing images. They are capable of autonomously learning and extracting information from intricate 

datasets, such as medical imaging data [18], [19], [20]. 

DenseNet was selected over other deep learning architectures such as ResNet and Inception due to its 

unique connectivity pattern, which promotes feature reuse and efficient gradient flow [18], [21], [22]. 

Unlike ResNet, which uses additive identity shortcuts, DenseNet connects each layer to every other 

layer in a feed-forward fashion, reducing the risk of vanishing gradients and improving parameter effi-

ciency. Compared to Inception, which relies on parallel convolutions with different filter sizes, Dense-

Net achieves competitive performance with fewer parameters and a more straightforward architecture. 

These advantages make DenseNet particularly suitable for medical image analysis where subtle features 

such as pneumonia indicators in chest X-rays require deep but efficient representation learning [23], 

[24]. Training the model on extensive datasets allows it to identify complex patterns and subtle details 

in CT images that could indicate pneumonia, thereby improving the accuracy and precision of diagnosis. 

In addition, the incorporation of AI-powered analysis has the potential to simplify workflow processes, 

allowing healthcare providers to accelerate treatment decisions and enhance patient outcomes. 

This research contributes to the field of AI-assisted healthcare diagnostics by examining how deep 

learning and pretrained neural networks might be used to diagnose pneumonia[25]. The statement high-

lights the significant impact that AI technologies can have on transforming healthcare practices. By 

applying transfer learning techniques with pre-trained models, this study seeks to optimize the model’s 

performance on a diverse range of chest X-ray datasets, allowing it to identify subtle patterns that might 

be overlooked by human clinicians. It emphasizes the need for thorough validation and integration ef-

forts to guarantee dependable and morally responsible use in real-world medical environments.  

With its ability to improve diagnostic accuracy while reducing the cognitive burden on healthcare 

workers, this innovation enables faster and more accurate decision-making. Additionally, incorporating 

AI technology into standard clinical workflows has the potential to improve patient outcomes by offering 

reliable, automated diagnostic assistance, especially in resource-constrained settings. Ultimately, this 

research seeks to position AI-assisted diagnosis as a critical tool in the fight against pneumonia, with 

the potential to revolutionize clinical practice and improve the overall quality of healthcare. 

II. RELATED WORKS 

Medical imaging is essential in modern medicine as it offers non-invasive information on anatomical 

structures and clinical diseases. Traditional imaging techniques like X-ray, computed tomography (CT), 

and magnetic resonance imaging (MRI) have been fundamental in diagnostic radiology for a long time. 

They assist clinicians in identifying, describing, and tracking different diseases, including 

pneumonia[26]. 

The area of medical imaging has been revolutionized in recent years by the integration of artificial 

intelligence (AI) techniques, specifically CNNs[27]. CNNs are a specialized category of deep learning 

models that are primarily built to handle visual input [28]. As a result, they are highly effective for tasks 

that include image recognition and classification[29]. These networks function by autonomously 

acquiring representations of features directly from image pixels, hence reducing the requirement for 

human feature extraction and improving the efficiency and accuracy of image analysis[30]. 

CNNs are widely used in medical imaging for a variety of purposes, including diagnosis, treatment 

planning, and prognosis[31]. CNNs have shown significant efficacy in automatically detecting lung 
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nodules on X-ray, hence assisting in the early diagnosis of lung cancer[32]. Furthermore, CNNs have 

been utilized in the field of neuroimaging to accurately identify and outline brain tumors on MRI scans. 

This model can acquire 98% model accuracy at differentiating normal scans and 3 brain tumor type scan 

[33]. The study on CNNs architectures for COVID-19 diagnosis using CT scans also demonstrated 

superior performance, achieving an accuracy of 92% and a recall rate of 95%[34].  

The introduction of Convolutional Neural Networks (CNNs) in the diagnosis of pneumonia seeks to 

address these issues by utilizing the advanced machine learning capabilities of these models. Pretrained 

convolutional neural network (CNN) models, such as DenseNet and ResNet, have been modified and 

optimized for the specific job of healthcare. This was achieved by training them on extensive datasets 

of medical images that have been tagged with specific scan information [35].  

Recent research has emphasized the capability of CNN-based methods to enhance the identification 

of pneumonia in many types of medical images, such as X-rays. Furthermore, the implementation of 

AI-powered algorithms in clinical practice can improve the allocation of healthcare resources and 

streamline workflow efficiency. This can help reduce diagnostic delays and enhance the overall delivery 

of healthcare services[36]. 

III. RESEARCH METHODS 

This section presents a comprehensive methodology aimed at enhancing image classification through 

deep learning techniques. The approach is systematically divided into five essential phases: Data 

Collection, Data Augmentation, Model Configuration, Model Training, and Performance Evaluation. 

Each phase plays a pivotal role in ensuring the model's overall effectiveness, from initial data processing 

to the final performance evaluation, thereby establishing a robust framework for accurate and reliable 

image classification. The following diagram provides a visual overview of the methodology, followed 

by a detailed explanation of each sub-phase. 

A. Collection of Data 

The dataset utilized in this investigation consists of chest X-ray pictures acquired from the retrospec-

tive cohorts of Guangzhou Women and Children’s Medical Center in Guangzhou [37].There are 5216 

photos were designated for training consist of 1341 normal samples and 3875 pneumonia samples, while 

624 photographs consist of 234 normal samples and 390 pneumonia samples were set aside for testing. 

The dataset consists of two distinct categories: normal cases and pneumonia cases. Before analysis, all 

chest X-ray pictures were subjected to a first quality control screening to eliminate scans that were of 

low quality or illegible. Afterward, two professional physicians independently evaluated the diagnostic 

grading of these photos. To reduce inconsistencies in grading, a third specialist was enlisted to assess 

the evaluation set.  

B. Data Augmentation 

Only the training set underwent data augmentation. The techniques applied included rotation up to 10 

degrees, normalization, shear transformations with a range up to 0.1, and the use of nearest fill mode 

[38]. The validation set was normalized but not subjected to any further augmentation. 

C. Model Configuration 

The study applies transfer learning using DenseNet-121, DenseNet-169, and DenseNet-201 pre-

trained on ImageNet [39] The original fully connected layer was replaced with a 2-neuron layer and 

softmax activation. All DenseNet backbones were frozen to leverage general visual features [40]. Dense-

Net variants were chosen for their dense connectivity, which promotes feature reuse and parameter ef-

ficiency compared to traditional architectures. However, comparisons with ResNet [41] or EfficientNet 

[42] could further validate performance claims. 

 
Figure 3. Diagram of the Image Classification Process Using DenseNet 
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D. Model Training Parameters 

The training process included the Adam optimizer along with a binary cross-entropy loss function. 

The models were trained for 20 epochs using a batch size of 32. 

E. Performance Evaluation 

The performance of the model was assessed using commonly used measures like as recall, precision, 

and F1 score. The evaluation was performed independently on the validation set in order to determine 

the models' capacity to generalize. The criteria were selected to thoroughly assess the model's capacity 

to differentiate between normal and pneumonia cases using chest X-ray pictures. 

IV. RESULT AND DISCUSSION 

In this section, we present and analyze the results of our pneumonia classification models, focusing 

on DenseNet121, DenseNet169, and DenseNet201. Our analysis delves into two main aspects: model 

convergence and stability, alongside performance metrics such as accuracy and loss scores. Detailed 

insights and comparative discussions are provided in the subsequent subsections, highlighting the 

strengths and weaknesses of each model in achieving accurate and consistent classification results. 

A. Model Convergence 

The performance of three DenseNet models (DenseNet121, DenseNet169, and DenseNet201) was 

evaluated on the training set in terms of accuracy and loss, as depicted in the provided plots shown in 

Figure 2 and Figure 3. 

Figure 2 illustrates the accuracy plot of the training set, revealing a consistent improvement in perfor-

mance across all three models throughout the training epochs. Both DenseNet121 and DenseNet169 

exhibit analogous trends, characterized by rapid initial gains in accuracy that subsequently plateau as 

training progresses. Notably, DenseNet169 demonstrates a slightly more erratic trajectory compared to 

DenseNet121, although both models generally adhere to a similar performance pattern.  

 
Figure 4. DenseNet accuracy plot of training set 

 

 
Figure 5. DenseNet accuracy plot of the validation set 

 



Jurnal ELTIKOM :  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

102 

In contrast, DenseNet201 consistently maintains a higher accuracy throughout the training process, 

indicating superior learning capabilities. This model's ability to extract and utilize features effectively 

contributes to its enhanced performance. By the conclusion of the training period, all models achieve 

near-perfect accuracy; however, DenseNet201 marginally outperforms its counterparts, underscoring its 

superior capacity for accurately classifying the training data.  

This analysis underscores the effectiveness of DenseNet201 in leveraging its architectural depth to 

achieve higher classification accuracy, thereby highlighting its potential as a robust model for pneumo-

nia detection tasks. The findings suggest that employing deeper architectures like DenseNet201 may 

significantly enhance diagnostic precision in clinical applications. 

The accuracy plot for the validation set, as shown in Figure 3, illustrates the decrease in error across 

the training epochs for each model.  All models exhibit a sharp decline in loss during the initial epochs, 

reflecting rapid learning and adaptation. DenseNet121 starts with a higher initial loss but quickly stabi-

lizes at a low level around the 10th epoch. DenseNet169 also shows a significant reduction in loss, albeit 

with greater fluctuations compared to DenseNet121. 

 In contrast, DenseNet201 consistently achieves the lowest loss throughout the training process, 

demonstrating superior learning efficiency and stability. Its earlier and lower convergence highlights its 

robustness and effectiveness, making it a promising model for accurate pneumonia detection. These 

results underscore the potential of deeper architectures like DenseNet201 to enhance diagnostic perfor-

mance in clinical applications. 

As illustrated in Figure 4, the loss plot for the training set reveals that DenseNet169 consistently 

achieves the highest accuracy scores throughout the training epochs, frequently surpassing the 0.90 

threshold. This performance indicates its superior capability in accurately classifying pneumonia cases. 

In contrast, DenseNet121 exhibits a more variable accuracy trajectory, attaining high accuracy at certain 

points but displaying notable fluctuations. This variability suggests that while DenseNet121 can reach 

elevated accuracy levels, its performance lacks reliability across different epochs. 

 
Figure 6. DenseNet loss plot of training set 

 

 
Figure 7. DenseNet loss plot of validation set 
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DenseNet201, on the other hand, consistently records the lowest accuracy scores, often falling below 

0.75. This persistent underperformance highlights its inadequacy in reliably classifying pneumonia cases 

when compared to the other two models. Overall, these findings underscore the varying effectiveness of 

each model, with DenseNet169 demonstrating a clear advantage in classification accuracy, while Dense-

Net201's performance raises concerns regarding its applicability in clinical settings for pneumonia de-

tection. 

In Figure 5, the loss plot of the validation set reveals notable differences in the performance of the 

models across the training epochs. DenseNet121 is distinguished by its relatively low and stable valida-

tion loss throughout the epochs, indicating a consistent learning process and strong generalization capa-

bilities. This stability suggests that DenseNet121 effectively adapts to new data while minimizing pre-

diction errors. 

Conversely, DenseNet169 exhibits several fluctuations in its loss scores, reflecting a less consistent 

reduction in prediction errors. Although this model can achieve high accuracy, the variability in its loss 

trajectory implies that it may not generalize as effectively and could be more susceptible to overfitting 

during training. 

DenseNet201, in contrast, consistently records the highest and most variable loss scores, indicating 

significant challenges in minimizing prediction errors. This persistent underperformance further corrob-

orates its inadequacy as a reliable model for pneumonia classification compared to its counterparts. 

Overall, these findings underscore the varying effectiveness of each model, with DenseNet121 demon-

strating superior stability and generalization potential for clinical applications in pneumonia detection. 

B. Model Performance 

The performance of three versions of the DenseNet model (DenseNet121, DenseNet169, and Dense-

Net201) was evaluated in terms of their precision, recall, and F1-score for detecting normal and pneu-

monia cases. The models used in this evaluation assessment are the best validation accuracy in the train-

ing process. We presented the result in the table below. 

Table 1 demonstrates that the DenseNet121 model achieved a precision of 0.99 for normal cases, but 

its recall was only 0.44, resulting in an F1-score of 0.61. This suggests that although the model has high 

precision in detecting normal cases, it has a notable deficiency in correctly recognizing a substantial 

fraction of genuine normal cases. On the other hand, when it comes to pneumonia cases, the model 

exhibited a precision of 0.75, which is relatively lower, but had a remarkable recall of 1.00, resulting in 

a high F1-score of 0.86. This indicates that DenseNet121 demonstrates a high level of efficacy in de-

tecting pneumonia patients, albeit with some misclassification of normal cases as pneumonia. 

DenseNet169 displayed comparable patterns. The precision for normal instances remained at 0.99, 

but the recall showed a little improvement to 0.46, resulting in an F1-score of 0.63. The precision for 

pneumonia cases was maintained at 0.76, with a recall of 1.00 and an F1-score of 0.86. The marginal 

increase in recall for normal examples indicates a subtle improvement in the model's capacity to accu-

rately detect normal occurrences in comparison to DenseNet121. 

Among the three models, DenseNet201 had the most equitable performance. The model attained a 

precision of 0.99 for typical scenarios, accompanied by a notably enhanced recall of 0.61, leading to a 

higher F1 score of 0.75. The precision for pneumonia patients improved to 0.81, while the recall reached 

0.99, resulting in an F1-score of 0.89. This suggests that DenseNet201 not only maintained high preci-

sion and recall for pneumonia diagnosis but significantly enhanced its recall and overall F1-score for 

identifying normal cases. The DenseNet201 model demonstrated superior performance in terms of recall 

and F1-score for both normal and pneumonia cases, indicating its effectiveness as the most optimal 

model for this classification task. 

TABLE 1  
DENSENET MODEL PERFORMANCE METRICS 

DENSENET MODEL CLASS  PRECISION RECALL F1 

DenseNet 121 Normal 0.99 0.44 0.61 Normal 

 Pneumonia 0.75 1.00 0.86 Pneumonia 

DenseNet 169 Normal 0.99 0.46 0.63 Normal 
 Pneumonia 0.76 1.00 0.86 Pneumonia 

DenseNet 201 Normal 0.99 0.61 0.75 Normal 

 Pneumonia 0.81 0.99 0.89 Pneumonia 

 



Jurnal ELTIKOM :  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

104 

These findings are consistent with various studies investigating the application of DenseNet in medi-

cal imaging. For instance, research on detecting hidden pediatric elbow fractures in X-ray images high-

lights that the architecture of DenseNet-201 facilitates efficient feature propagation and reuse, leading 

to improved performance with fewer parameters compared to earlier models[43]. This efficiency repre-

sents a notable advancement over traditional convolutional neural networks. Similarly, in the classifica-

tion of Alzheimer's disease, DenseNet-201 has been recognized for its superior accuracy, reduced com-

putational complexity, and optimized resource utilization, offering a significant advantage over alterna-

tive approaches[44]. Furthermore, in the context of predicting anterior slippage of the vertebral lumbar 

spine, DenseNet-201 has demonstrated comparable or superior performance relative to other models 

while maintaining a lower parameter count, reinforcing its efficacy in medical image analysis[45]. 

However, while the DenseNet201 model demonstrated the most balanced performance among the 

evaluated architectures, its recall and precision metrics suggest important considerations for real-world 

implementation and future research. The recall rate of 0.61 for normal cases indicates a relatively higher 

rate of false negatives, meaning some normal cases are misclassified as pneumonia. In clinical applica-

tions, this could lead to unnecessary follow-up tests or anxiety for patients. Conversely, its high recall 

of 0.99 for pneumonia cases suggests a minimal risk of missing pneumonia diagnoses, which is critical 

in medical imaging applications where early and accurate detection can significantly impact treatment 

outcomes. 

The precision of DenseNet201 for pneumonia (0.81) implies that while most predicted pneumonia 

cases are correct, some normal cases may still be misclassified as pneumonia. This trade-off between 

precision and recall must be carefully considered in deployment scenarios, particularly in healthcare, 

where both false positives and false negatives have significant consequences. Future work should focus 

on optimizing the model to enhance recall for normal cases without compromising pneumonia detection 

accuracy. This could involve incorporating advanced loss functions that balance precision and recall, 

applying data augmentation techniques to improve normal case detection, or integrating ensemble learn-

ing to reduce classification errors. Additionally, further research should explore how the DenseNet ar-

chitecture generalizes across diverse datasets, including different imaging modalities and patient de-

mographics, to improve its robustness in real-world applications. 

V. CONCLUSION 

This study investigated the performance of three DenseNet models (DenseNet121, DenseNet169, and 

DenseNet201) in detecting pneumonia through the analysis of CT scans. The findings demonstrate that 

DenseNet201 surpasses the other two models in terms of precision, recall, and F1-score, specifically in 

reliably recognizing pneumonia patients while retaining a high level of performance in detecting normal 

cases. In addition, DenseNet201 exhibited improved learning skills throughout the training phase, at-

taining higher accuracy and lower loss with increased stability in comparison to DenseNet121 and 

DenseNet169. 

The results emphasize the potential of DenseNet201 as a powerful tool for enhancing pneumonia 

identification in medical imaging, providing notable benefits compared to conventional approaches. The 

improved efficiency and dependability of DenseNet201 can enhance the precision and promptness of 

diagnosis, ultimately resulting in improved patient outcomes and decreased pneumonia-related death 

rates. Utilizing advanced deep learning models such as DenseNet201 in medical imaging has great po-

tential for improving diagnostic precision and effectiveness in clinical settings. Additional study and 

clinical validation are recommended to fully comprehend the advantages of these models in real-world 

healthcare environments. 

REFERENCES 

[1] M. Assefa, “Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns,” Pneumonia, 
vol. 14, no. 1, p. 4, May 2022, doi: 10.1186/s41479-022-00096-z. 

[2] C. Cilloniz, C. Dela Cruz, W. H. Curioso, and C. H. Vidal, “World Pneumonia Day 2023: the rising global threat of pneumonia and what 
we must do about it,” European Respiratory Journal, vol. 62, no. 5, p. 2301672, Nov. 2023, doi: 10.1183/13993003.01672-2023. 

[3] K. K. Yadav and S. Awasthi, “Childhood Pneumonia: What’s Unchanged, and What’s New?,” Indian J Pediatr, vol. 90, no. 7, pp. 693–

699, Jul. 2023, doi: 10.1007/s12098-023-04628-3. 
[4] Y. Li et al., “Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial 

virus in children younger than 5 years in 2019: a systematic analysis,” The Lancet, vol. 399, no. 10340, pp. 2047–2064, May 2022, doi: 

10.1016/S0140-6736(22)00478-0. 



Jurnal ELTIKOM :  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

105 

[5] Y. M. Al-Worafi, “Nosocomial Pneumonia Management in Developing Countries,” in Handbook of Medical and Health Sciences in 

Developing Countries, Cham: Springer International Publishing, 2024, pp. 1–23. doi: 10.1007/978-3-030-74786-2_51-1. 

[6] V. Uskoković, “Health economics matters in the nanomaterial world: Cost-effectiveness of utilizing an inhalable antibacterial nano-
material for the treatment of multidrug-resistant pneumonia,” Technol Soc, vol. 66, p. 101641, Aug. 2021, doi: 10.1016/j.tech-

soc.2021.101641. 

[7] C. Cilloniz, C. Dela Cruz, W. H. Curioso, and C. H. Vidal, “World Pneumonia Day 2023: the rising global threat of pneumonia and what 
we must do about it,” European Respiratory Journal, vol. 62, no. 5, p. 2301672, Nov. 2023, doi: 10.1183/13993003.01672-2023. 

[8] C. Scelfo, F. Menzella, M. Fontana, G. Ghidoni, C. Galeone, and N. C. Facciolongo, “Pneumonia and Invasive Pneumococcal Diseases: 

The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance,” Vaccines (Basel), vol. 9, no. 5, p. 420, Apr. 2021, 
doi: 10.3390/vaccines9050420. 

[9] K. More, P. Jawale, S. Bhattad, and J. Upadhyay, “Pneumonia Detection using Deep Learning,” in 2021 International Conference on 

Smart Generation Computing, Communication and Networking (SMART GENCON), IEEE, Oct. 2021, pp. 1–5. doi: 
10.1109/SMARTGENCON51891.2021.9645844. 

[10] M. Caban and E. Małecka-Wojciesko, “Gaps and Opportunities in the Diagnosis and Treatment of Pancreatic Cancer,” Cancers (Basel), 

vol. 15, no. 23, p. 5577, Nov. 2023, doi: 10.3390/cancers15235577. 
[11] C. H. Barrios, “Global challenges in breast cancer detection and treatment,” The Breast, vol. 62, pp. S3–S6, Mar. 2022, doi: 

10.1016/j.breast.2022.02.003. 

[12] W. Khan, N. Zaki, and L. Ali, “Intelligent Pneumonia Identification From Chest X-Rays: A Systematic Literature Review,” IEEE Access, 
vol. 9, pp. 51747–51771, 2021, doi: 10.1109/ACCESS.2021.3069937. 

[13] K. Zimna et al., “Lung Ultrasonography in the Evaluation of Late Sequelae of COVID-19 Pneumonia—A Comparison with Chest Com-

puted Tomography: A Prospective Study,” Viruses, vol. 16, no. 6, p. 905, Jun. 2024, doi: 10.3390/v16060905. 
[14] R. Sivarajah, M. L. Dinh, and A. Chetlen, “Errors in Breast Imaging: How to Reduce Errors and Promote a Safety Environment,” J 

Breast Imaging, vol. 3, no. 2, pp. 221–230, Mar. 2021, doi: 10.1093/jbi/wbaa118. 

[15] L. Zhang, X. Wen, J.-W. Li, X. Jiang, X.-F. Yang, and M. Li, “Diagnostic error and bias in the department of radiology: a pictorial 
essay,” Insights Imaging, vol. 14, no. 1, p. 163, Oct. 2023, doi: 10.1186/s13244-023-01521-7. 

[16] B. Fawver et al., “Seeing isn’t necessarily believing: Misleading contextual information influences perceptual-cognitive bias in radiolo-

gists.,” J Exp Psychol Appl, vol. 26, no. 4, pp. 579–592, 2020, doi: 10.1037/xap0000274. 
[17] N. N. Khanna et al., “Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment,” Healthcare (Switzerland), vol. 10, 

no. 12, Dec. 2022, doi: 10.3390/healthcare10122493. 

[18] Y. Liu, H. Pu, and D.-W. Sun, “Efficient extraction of deep image features using convolutional neural network (CNN) for applications 
in detecting and analysing complex food matrices,” Trends Food Sci Technol, vol. 113, pp. 193–204, Jul. 2021, doi: 

10.1016/j.tifs.2021.04.042. 

[19] M. Tsuneki, “Deep learning models in medical image analysis,” J Oral Biosci, vol. 64, no. 3, pp. 312–320, Sep. 2022, doi: 
10.1016/j.job.2022.03.003. 

[20] A. W. Salehi et al., “A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope,” Sustainability, 

vol. 15, no. 7, p. 5930, Mar. 2023, doi: 10.3390/su15075930. 
[21] T. Pavlović, T. Popović, and S. Čakić, “Breast Cancer Detection Using ResNet and DenseNet Architecture,” in 2025 29th International 

Conference on Information Technology (IT), IEEE, Feb. 2025, pp. 1–4. doi: 10.1109/IT64745.2025.10930260. 

[22] Q. Zhou, W. Zhu, F. Li, M. Yuan, L. Zheng, and X. Liu, “Transfer Learning of the ResNet-18 and DenseNet-121 Model Used to Diagnose 
Intracranial Hemorrhage in CT Scanning,” Curr Pharm Des, vol. 28, no. 4, pp. 287–295, Feb. 2022, doi: 

10.2174/1381612827666211213143357. 

[23] M. A. Hasnain, H. Malik, M. M. Asad, and F. Sherwani, “Deep learning architectures in dental diagnostics: a systematic comparison of 
techniques for accurate prediction of dental disease through x-ray imaging”, doi: 10.1108/IJICC-08-2023-0230. 

[24] R. Bhuria and S. Gupta, “Innovative AI Solutions for Pneumonia Detection: Exploring DenseNet-161 in Medical Imaging,” in 2024 5th 

International Conference on Data Intelligence and Cognitive Informatics (ICDICI), IEEE, Nov. 2024, pp. 638–643. doi: 
10.1109/ICDICI62993.2024.10810835. 

[25] F. Gou, J. Liu, C. Xiao, and J. Wu, “Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence,” 

Diagnostics, vol. 14, no. 14, p. 1472, Jul. 2024, doi: 10.3390/diagnostics14141472. 
[26] I. Griffin et al., “Evaluating Acute Pulmonary Changes in Coronavirus Disease 2019: A Comparative Analysis of Computed Tomogra-

phy, Chest Radiography, Lung Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography with Fluorodeoxyglucose 

Modalities,” Seminars in Ultrasound, CT and MRI, 2024, doi: 10.1053/j.sult.2024.02.007. 
[27] D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Mar. 01, 2022, 

Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s12065-020-00540-3. 
[28] P. D. Koprinkova-Hristova, K. S. Yadav, H. Ying, and Y.-F. Li, “Disrupted visual input unveils the computational details of artificial 

neural networks for face perception,” Frontiers in Computational Neuroscience, vol. 16, p. 1054421, 2022. 

[29] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural net-
works,” Nov. 01, 2021, MDPI. doi: 10.3390/rs13224712. 

[30] A. A. Barbhuiya, R. K. Karsh, and R. Jain, “CNN based feature extraction and classification for sign language,” Multimed Tools Appl, 

vol. 80, no. 2, pp. 3051–3069, Jan. 2021, doi: 10.1007/s11042-020-09829-y. 

[31] L. Pinto-Coelho, “How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications,” Dec. 

01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/bioengineering10121435. 

[32] V. Sreeprada and Dr. K. Vedavathi, “Lung Cancer Detection from X-Ray Images using Hybrid Deep Learning Technique,” Procedia 
Comput Sci, vol. 230, pp. 467–474, 2023, doi: 10.1016/j.procs.2023.12.102. 

[33] M. Hasan Fadlun and U. Hayati, “Klasifikasi Tumor Otak menggunakan Convolutional Neural Network dan Transfer Learning,” Jurnal 

Informatika dan Rekayasa Perangkat Lunak , vol. 6, no. 1, pp. 289–295, 2024. 
[34] N. Hasan, Y. Bao, A. Shawon, and Y. Huang, “DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using 

CT Image,” SN Comput Sci, vol. 2, no. 5, Sep. 2021, doi: 10.1007/s42979-021-00782-7. 

[35] H. Chen et al., “Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism,” 
BMC Bioinformatics, vol. 23, no. 1, Dec. 2022, doi: 10.1186/s12859-022-04824-6. 

[36] K. Pierre et al., “Applications of Artificial Intelligence in the Radiology Roundtrip: Process Streamlining, Workflow Optimization, and 

Beyond,” Semin Roentgenol, vol. 58, no. 2, pp. 158–169, Apr. 2023, doi: 10.1053/j.ro.2023.02.003. 
[37] D. S. Kermany et al., “Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning,” Cell, vol. 172, no. 5, pp. 

1122-1131.e9, Feb. 2018, doi: 10.1016/j.cell.2018.02.010. 

[38] Y. Hou, Z. Wu, X. Cai, and T. Zhu, “The application of improved densenet algorithm in accurate image recognition,” Sci Rep, vol. 14, 
no. 1, pp. 1–14, Dec. 2024, doi: 10.1038/S41598-024-58421-

Z;SUBJMETA=1042,117,639,705,794;KWRD=COMPUTATIONAL+SCIENCE,COMPUTER+SCIENCE,SOFTWARE. 



Jurnal ELTIKOM :  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

106 

[39] Y. D. Zhang, S. C. Satapathy, X. Zhang, and S. H. Wang, “COVID-19 Diagnosis via DenseNet and Optimization of Transfer Learning 

Setting,” Cognit Comput, vol. 16, no. 4, pp. 1649–1665, Jul. 2024, doi: 10.1007/S12559-020-09776-8/TABLES/13. 

[40] X. Yu, N. Zeng, S. Liu, and Y.-D. Zhang, “Utilization of DenseNet201 for diagnosis of breast abnormality,” Mach Vis Appl, vol. 30, no. 
7–8, pp. 1135–1144, Oct. 2019, doi: 10.1007/s00138-019-01042-8. 

[41] P. Ormeño-Arriagada, E. Navarro, C. Taramasco, G. Gatica, and J. P. Vásconez, “Deep Learning Techniques for Oral Cancer Detection: 

Enhancing Clinical Diagnosis by ResNet and DenseNet Performance,” 2025, pp. 59–72. doi: 10.1007/978-3-031-75144-8_5. 
[42] A. Mohan, “ENHANCED MULTIPLE DENSE LAYER EFFICIENTNET,” 2024. 

[43] J. Li et al., “Detection of hidden pediatric elbow fractures in X-ray images based on deep learning,” J Radiat Res Appl Sci, vol. 17, no. 

2, p. 100893, Jun. 2024, doi: 10.1016/j.jrras.2024.100893. 
[44] Zia-Ur-Rehman et al., “Classification of Alzheimer disease using DenseNet-201 based on deep transfer learning technique,” PLoS One, 

vol. 19, no. 9, Sep. 2024, doi: 10.1371/journal.pone.0304995. 

[45] M. R. Khare and R. H. Havaldar, “Predicting the anterior slippage of vertebral lumbar spine using Densenet-201,” Biomed Signal Process 
Control, vol. 86, Sep. 2023, doi: 10.1016/j.bspc.2023.105115. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


