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ABSTRACT 

This study addresses the significant threat of tomato diseases to production in Ghana, which has led to substan-

tial yield and quality losses, adversely affecting the livelihoods of local farmers and the availability of this essential 

dietary staple. Traditional disease identification methods are time-consuming and rely on subjective visual inspec-

tions, hindering early detection and control. This study develops a machine learning model capable of accurately 

identifying tomato plant diseases through image processing. The methodology involves processing a dataset of 

tomato plant images displaying healthy and diseased symptoms. The proposed model employs the YOLOv5 archi-

tecture and is deployed on a mobile platform for accessible disease identification. The model achieved a validation 

mAP@.5 of 0.715, demonstrating strong performance during live, on-site testing. This system provides a swift, 

accurate, and automated solution for detecting tomato diseases, supporting the sustainability of tomato production 

in Ghana. 
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I. INTRODUCTION 

OMATOES are a staple ingredient in the daily diet of Ghanaians, with approximately 90% of the 

300,000 metric tons produced annually consumed locally. Tomatoes account for about 38% of 

total vegetable expenditure in the country [1]. However, plant diseases significantly threaten 

tomato production, causing severe losses in yield and quality. These diseases, caused by various fungi 

or water molds that infect leaves, stems, and fruits, spread rapidly under favorable environmental 

conditions such as warm and wet weather. Common tomato diseases include bacterial spots, leaf mosaic, 

leaf curls, septoria, blight, and fusarium. 

A survey conducted in three districts within Ghana's forest and forest-savannah agro-ecological zones 

identified blight as the predominant fungal disease, with a mean incidence of 63.9% in the Asante Akim 

North District [2]. In contrast, fusarium was most prevalent in the Offinso North District. These diseases 

not only reduce the marketability and shelf life of tomatoes but also increase production costs due to the 

heavy reliance on fungicides. In some cases, tomato diseases have caused annual economic yield losses 

of up to 79%, underscoring their detrimental impact on Ghana's tomato production.  

Early detection and diagnosis of tomato diseases are crucial for effective management and prevention 

of further damage. Conventional methods, which rely on expert visual inspections, are time-consuming 

and labor-intensive. This necessitates the development of fast, accurate, and automated disease identifi-

cation methods using machine learning.  

Advancements in image processing and machine learning have recently provided promising solutions 

for the early and precise detection of plant diseases, enabling timely intervention and mitigation. Among 

the crops affected by diseases, tomatoes hold particular economic importance in Ghana. The detection 
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of tomato leaf diseases has garnered considerable attention due to their profound impact on yield and 

quality. 

II. RELATED WORKS 

[3] proposed a lightweight CNN model for classifying tomato leaf blight, utilizing a transfer learning 

approach to evaluate the performance of pre-trained MobileNetV2, NASNetMobile, and Efficient-

NetV2B0 models. Among these, the EfficientNetV2B0 model achieved the highest training accuracy of 

99.95%, followed by MobileNetV2 with 99.65%, and NASNetMobile with 97.98%. The final model 

size was 30.6 MB, making it suitable for deployment on mobile applications. This model was imple-

mented on a React Native mobile application, enabling farmers to capture images of tomato leaves for 

disease prediction. [4] introduced a custom CNN model for identifying tomato leaf diseases, aiming to 

deploy the trained model on a web platform for accessible disease identification. The model, trained on 

a custom dataset over more than 50 epochs, achieved an accuracy of 94.17% across eight classes of 

tomato leaf diseases and one healthy class. The web platform allowed users to upload images of plant 

leaves, predict the disease, and receive suggested remedies. [5] investigated diseases affecting corn, 

potato, and tomato plants, including bacterial spots, septoria, and target rust on tomatoes. The study 

evaluated the performance of VGG16, VGG19, and a traditional CNN model using a training dataset of 

25,272 images sourced from Kaggle. Results indicated that VGG19 performed best with an accuracy of 

95%, while both VGG16 and the traditional CNN achieved 86%. 

[6] modeled ResNet and Xception architectures to classify healthy leaves and detect early blight in 

tomato plants, aiming to train models suitable for mobile application development. The study utilized 

self-collected images to train the two models. YOLO object detectors, including its variants (YOLOv3, 

YOLOv3-tiny, and YOLOv3-SPP), were used as feature extractors to identify diseased regions of to-

mato leaves. After training, ResNet achieved an accuracy of 99.735%, while Xception achieved 

99.952%. [7] employed a standard CNN model for detecting tomato leaf diseases, leveraging multiple 

layers to process the dataset more efficiently. The images were sourced from Kaggle’s PlantVillage 

dataset and augmented. Seven layers, including Input, Convolutional, Pooling, Nonlinear, Dropout, 

Softmax, and Normalizing layers, were integrated to generate the final feature map. The model achieved 

an accuracy of 97.35%. [8] utilized a computer vision algorithm powered by artificial intelligence to 

detect tomato plant diseases. The model focused on three common diseases: Early Blight, Late Blight, 

and Septoria Leaf Spot. A Region Proposal Network (RPN) was used to segment the leaves, followed 

by the Chan-Vese (CV) algorithm to extract symptomatic features from the segmented images. The 

Kaggle PlantVillage dataset was used for training and testing. The final model, a CNN with nine layers, 

achieved an accuracy of 91.66%. [9] developed a custom CNN model to detect tomato leaf diseases 

across nine disease classes and one healthy class. The model was trained on Kaggle’s PlantVillage da-

taset and utilized a sequential architecture comprising three convolutional layers, three max-pooling 

layers, a ReLU activation function, and a learning rate of 0.001. The final model achieved an accuracy 

of 91.2%. 

[10] utilized logistic regression, support vector machine (SVM), and random forest algorithms for 

tomato leaf disease detection. The dataset used was Kaggle’s PlantVillage dataset, and features were 

extracted using the Histogram of Oriented Gradients method. Among the models, SVM achieved the 

highest accuracy of 73%. [11] proposed a custom CNN model for detecting tomato leaf diseases, trained 

on Kaggle’s PlantVillage dataset. The model was compared to a pre-trained InceptionV3 model, with 

both models trained for 10 epochs. The custom CNN model outperformed InceptionV3, achieving an 

accuracy of 98.2% compared to InceptionV3's 81.33%. [12] developed a custom CNN model to detect 

tomato leaf diseases using images of tomato leaves. The architecture included four convolutional layers, 

four max pooling layers, and fully connected layers. The model achieved an overall accuracy of 96.26%. 

[13] implemented a custom CNN model to classify three tomato leaf diseases, utilizing data augmenta-

tion techniques. The model was trained on a dataset of 4,400 leaf images from Kaggle. Additionally, a 

5-fold cross-validation method was applied, resulting in an accuracy of 97.8%. [14] introduced a custom 

CNN model called TLNet (Tomato Leaf Net) for tomato leaf disease detection across eight classes. The 

model was trained using a Sequential architecture with five convolutional layers, seven batch normali-

zation layers, five max pooling layers, three dense layers, and flatten, dropout, and Softmax activation 

layers. Training was conducted over 50 epochs with the Adam optimizer and a learning rate of 0.000001. 

The model achieved an accuracy of 98.77%.  
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[15] applied Deep Neural Networks (DNN) to detect tomato leaf diseases, using the Adaptive Histo-

gram Equalization technique to address inadequate lighting in leaf images. The model achieved an ac-

curacy of 98.29%. [16] implemented two distinct CNN models for identifying tomato illnesses. The first 

model, built using transfer learning on a pre-trained network, achieved an accuracy of 91.34%, while 

the nascent CNN model obtained an accuracy of 87%. [17] investigated the identification of tomato leaf 

diseases using the Inception V3 deep learning model and evaluated additional architectures, including 

VGG16, EfficientNet B3, and Inception V3. [18] utilized a CNN model based on the pre-trained VGG19 

architecture to identify four tomato plant diseases: early blight, late blight, bacterial spot, and leaf mold. 

The model achieved an accuracy of 97.5% with a detection time of just 4 seconds.  

[19] utilized ResNet110 to address the limitation of limited plant leaf images, leveraging the PlantVil-

lage dataset from Kaggle, which contains 16,012 images of tomato leaves across 10 classes. The perfor-

mance of ResNet110 was compared to VGG16 and VGG19 models from other studies that used the 

same dataset. The proposed ResNet110 achieved the highest accuracy of 99.7%. [20] investigated trans-

fer learning methods for detecting tomato leaf diseases, addressing the poor performance of nascent 

CNN models on small datasets. Pre-trained models, including InceptionV3, VGG16, and ResNet50, 

were employed, and their accuracy was compared to classic CNN models. The dataset contained 5,500 

images distributed across 9 disease classes and one healthy class. [21] aimed to detect diseases in tomato 

leaf images using the ResNet50 architecture, with preprocessing steps involving Hough transform and 

morphological image processing. The proposed ResNet50 model achieved an accuracy of 97.6%, out-

performing AlexNet (95%) and VGG16 (95.2%). [22] focused on identifying tomato leaf diseases using 

pre-trained CNN models. The study involved nine disease classes and one healthy class, testing nine 

pre-trained models and evaluating their performance. [23] deployed two CNN-based models, VGG16 

and GoogLeNet, for tomato leaf disease classification using transfer learning. Both models were trained 

on Kaggle’s PlantVillage dataset and achieved an accuracy of 99.23%. [24] explored six pre-trained 

models with fine-tuning techniques by modifying the network architecture layers. The models included 

MobileNetV1, InceptionV3, VGG16, DenseNet, ResNet, and AlexNet. The study did not apply data 

augmentation, focusing solely on optimizing accuracy. The final results showed accuracy levels of 

99.75% for ResNet, 99.62% for MobileNetV1 and DenseNet, 98.74% for InceptionV3, 97.48% for 

AlexNet, and 96.73% for VGG16. [25] discussed various approaches to tomato disease detection, in-

cluding the K-means algorithm, which groups similar pixels based on color or intensity. 

[26] implemented a federated CNN model for tomato leaf disease detection across five severity levels, 

including one for healthy leaves and four representing different disease stages. The federated approach 

allowed multiple clients to train the model without sharing raw data. Instead, client data was used locally 

to train and update the model, which achieved an accuracy of 97% across all severity levels. [27] ex-

plored enhancing the pre-trained MobileNetV2 model by adding five additional layers and integrating 

it with the Caffe framework. The Caffe model was loaded for plant disease detection, followed by the 

modified MobileNetV2 for classification. Results showed that the proposed Caffe-MobileNetV2 meth-

odology outperformed standalone CNN or MobileNetV2 models, achieving an accuracy of 99.28%. [28] 

integrated the VGG16 model with Faster R-CNN to develop a system for identifying and categorizing 

tomato leaf diseases. The combination of Faster R-CNN and VGG16 was used for training and testing 

the final model, and its performance was compared to alternative methods. The results showed varying 

accuracy scores: CNN with the EM algorithm achieved 94.53%, CNN with Random Forest achieved 

95.46%, R-CNN achieved 92.2%, Fast R-CNN achieved 95.75%, and Faster R-CNN achieved 98%. 

III. RESEARCH METHOD 

A. Proposed System Architecture 

Figure 1a illustrates the tomato leaf disease detection system. The system is designed for practical on-

site application, where users can assess the health of tomato leaves using a smartphone. The mobile 

software application, equipped with a trained model, can be installed on any Android smartphone. Users 

can either upload an image of the leaf or capture one using the phone’s camera. The application then 

predicts the health status of the leaf, classifying it as healthy or diseased. The primary goal of the mobile 

application is to enable faster detection by allowing multiple users to access the app on their 
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smartphones. These users are not required to have prior knowledge of tomato farming or plant health. 

By facilitating widespread usage, the system aims to reduce yield losses through early detection of dis-

eases such as blight.  

Figure 1b outlines the functionality of the mobile app. The MobileApp stage serves as the user inter-

face, providing the frontend of the application. The ImageService stage manages the image acquisition 

process, including uploading an existing image or capturing one through the camera. The Preprocess-

ingService stage converts the uploaded or captured image into the appropriate dimensions and format 

required by the trained model. The MLModel stage contains the trained machine learning model, which 

predicts the leaf’s health status as either healthy or diseased. The result is then presented in a user-

friendly format through the mobile app.  

The application aims to streamline disease detection, offering a user-friendly interface with essential 

features. The camera button allows users to launch the camera app for on-site image capture, while the 

upload button enables users to select and upload images from their phone’s gallery. Once an image is 

captured or uploaded, it is processed by the trained model to classify the health status of the leaf. The 

results are displayed to the user as either healthy or infected. 

The system’s object detection capability extends beyond classification by recognizing and localizing 

multiple objects within an image, which is particularly useful when a single tomato plant may exhibit 

multiple diseases. employs bounding boxes to precisely locate detected objects, combining classification 

and localization. In contrast, image classification assigns a single label to the entire image, identifying 

only the dominant class without localization. Although similar, object detection and image classification 

have distinct differences and use cases where each excels. Object detection identifies multiple objects 

within an image and provides bounding boxes that specify their positions. Its output includes multiple 

labels and bounding boxes, making it more complex due to the added localization task. The primary 

evaluation metrics for object detection are Intersection over Union (IoU) and Mean Average Precision 

(mAP). Image classification, on the other hand, predicts the class of a single object by analyzing patterns 

and features of the entire image. Its output is a single label representing the dominant class in the image. 

This approach is less complex and straightforward, with accuracy, precision, and recall being the pri-

mary evaluation metrics. Object detection was chosen as the preferred approach for this system because 

it enables the identification of multiple diseases in a single image, making it more practical for real-

world applications.  

Transfer learning is a technique that leverages a pre-trained neural network as a foundation for a new 

training task. A pre-trained model is a deep learning model trained on a large dataset with pre-computed 

weights. To implement transfer learning, the pre-trained model is fine-tuned on a smaller dataset, mak-

ing it particularly effective when data is limited. Unlike traditional CNN methods, which involve train-

ing the model from scratch, transfer learning starts with pre-existing weights rather than random initial-

ization. Traditional CNNs train the entire network on a specific task, which can produce good results 

but often requires larger datasets and significant computational resources. Transfer learning, by contrast, 

is more efficient for tasks with smaller datasets, such as this project, which used only 4,280 images and 

did not require extensive custom features. The pre-trained model utilized for this project was YOLOv5 

by Ultralytics [31], renowned for its speed and accuracy in object detection tasks for images and videos. 

YOLOv5 features a 3-tier architecture comprising the Backbone, Neck, and Head, each serving specific 

  
(a) (b) 

Figure 1. System and mobile software application architecture 
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roles to optimize performance. YOLOv5 is available in different versions—YOLOv5s, YOLOv5m, 

YOLOv5l, and YOLOv5x—corresponding to small, medium, large, and extra-large sizes. While larger 

models offer higher accuracy, they also require longer training times. The YOLOv5 model was selected 

for this project due to its strong balance of accuracy and generalization capabilities, making it well-

suited for the task.  

B. System neural network architecture training and testing 

The neural network architecture comprises two phases: the training phase and the testing phase. In 

the training phase, as illustrated in Figure 2, the dataset is divided into training and validation sets. The 

images are pre-processed through resizing, rescaling, and augmentation techniques (e.g., rotation, hori-

zontal flipping, and zooming). The pre-processed training and validation images are then used to train 

and validate the model, with the training process involving feature extraction and classification.  

In the testing phase, as illustrated in Figure 3, the trained model processes images captured or up-

loaded by users. These user-provided images are pre-processed by resizing and rescaling to meet the 

model’s input requirements. The pre-processed image is then passed through the trained model, which 

classifies it as either healthy or diseased. 

Other models could potentially serve a similar purpose for this project, such as VGG16, VGG19, and 

MobileNetV2. However, VGG16 and VGG19 were excluded due to their unsuitability for mobile de-

ployment. While MobileNetV2 is better suited for mobile applications, it is a general-purpose model, 

unlike YOLOv5, which is specifically optimized for object detection. YOLOv5 offers superior accuracy, 

speed, and scalability, with multiple model sizes (e.g., YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x) to suit different use cases. For these reasons, YOLOv5 was chosen over MobileNetV2, as it 

better aligns with the project's objectives. 

The training processor offers two options: CPU and GPU. In machine learning, GPUs are typically 

preferred due to their advantages over CPUs, including significantly shorter training times and, in some 

cases, better results. However, GPUs require more computational resources than CPUs. For this work, 

after multiple trials comparing CPU and GPU training, the GPU demonstrated superior performance 

with much shorter training times. The number of training cycles, referred to as epochs, is a critical 

parameter in model training. An epoch defines how many times the model processes a batch of image 

data. In this case, the initial target was 1,000 epochs. However, higher epoch counts can increase training 

 
 

Figure 2. System architecture training 

 
Figure 3. System architecture testing 
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time and the risk of overfitting, whereas lower epoch counts reduce training time but may impact per-

formance metrics such as accuracy, precision, and recall. To balance these factors, EarlyStopping was 

implemented, resulting in training stopping at 721 epochs. EarlyStopping prevents overfitting and re-

duces unnecessary training time while achieving optimal results.  

The model size also influences training outcomes, with different sizes (small, medium, large, and 

extra-large) yielding varying results and training durations. After extensive testing, the "Large" model 

was selected as it provided the best balance between accuracy and training time. Furthermore, the final 

trained model's size was optimized for mobile deployment. Batch size, another important parameter, 

determines the number of image samples processed before recalculating weights and moving to the next 

batch. Batch size impacts both training time and model performance. After multiple tests, a batch size 

of 16 was found to be optimal for this work. The validation set size, representing the percentage of 

training data allocated for validation, was set at 20%, a commonly recommended value. Adjustments to 

the validation set size did not significantly affect training time or model performance. 

The neural network architecture parameters are crucial for configuring and selecting the neural net-

work for training. The input layer, which is the first stage of the training computation, holds the features 

generated during the feature generation stage of the platform. These features are passed to the chosen 

model, YOLOv5, for training. YOLOv5 processes these features through its various layers to produce 

output. The output stage classifies the data into one or more classes or determines if no class is present.  

C. Proposed system prototype 

The system prototype, as illustrated in Figure 4, comprises components including the mobile software 

application, the trained model, and the tools and technologies used to develop the project. The block 

diagram highlights two primary components: the mobile software application interface and the trained 

model, along with tools for image pre-processing and post-processing that work together to achieve the 

desired results. 

TABLE 1 

DATA STRUCTURE FOR IMAGE TRAINING 

Class Number of instances 

Bacterial spot 1251 
Early blight 4938 

Late blight 10869 

Septoria         18165 
Leaf curl 1371 

Mosaic 603 

Fusarium 2643 

 

 
Figure 4. System prototype block diagram 

 

    

    
Figure 5. System training phase images 
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The dataset used for the project is Crop Disease Ghana [29] from Kaggle, containing images and 

labels for three crops: tomato, corn, and pepper. The tomato classes applied for model training include 

healthy, early blight, late blight, fusarium, septoria, bacterial spot, leaf curl, and mosaic. The images 

were annotated using the PASCAL VOC format, which supports object detection. Each image has an 

accompanying .xml file containing the leaf’s coordinates, bounding box dimensions, and corresponding 

labels. Given this dataset structure, an object detection approach was adopted. 

The model was trained using Edge Impulse [30], a leading-edge AI platform designed to simplify 

building, deploying, and scaling embedded ML applications. The platform offers a range of tools, in-

cluding data annotation tools, pre-trained models, and charting tools, which streamline machine learning 

projects. Edge Impulse was chosen for its user-friendly interface and comprehensive toolkit. Before 

training, the dataset was cleaned to ensure accuracy. Some images were removed, bounding boxes were 

redrawn, and incorrect labels were updated or eliminated to guarantee that the model was trained on 

properly labeled data, resulting in more accurate predictions.  

TABLE 2 

EDGE IMPULSE IMAGE TRAINING 

Edge impulse Image training Output image 

Impulse crea-

tion 

Process is a custom step peculiar to the Edge Impulse plat-

form. This stage handles the pre-processing of the images. 

It resizes the images to stated dimensions and prepares the 
images for training 

The Edge Impulse platform describes an impulse as; takes 

raw data, uses signal processing to extract features, and 
then uses a learning block to classify new data. The impulse 

has four blocks which perform different functions for the 

overall pre-processing of the image. The Image data block 
allows you to specify the dimensions for resizing all the 

input images. This is specified within the ‘Image width’ 
and ‘Image height’ fields. The ‘Resize mode’ field speci-

fies how the images should be resized (Squash, Fit longest 

axis, Fit shortest axis). Different settings have different ad-
vantages, disadvantages and use cases. After multiple tri-

als, the settings in the image above produced the best re-

sults. The processing block (Image block) performs and 

simple task of specifying the type of data. The block in the 

above image specifies the data as images this prevents any 

errors during pre-processing. The learning block (Object 
Detection’ block) specifies the type of training (object de-

tection or traditional CNN) for the model. Objected detec-

tion is selected over the traditional CNN method for rea-
sons stated in a previous chapter. The last block, ‘Output 

features’ show the different classes of the input image data. 

The block makes clear the classes to train on and makes 
clear the results expected by the user 

 

Feature crea-

tion  

The feature generation stage plays a very important role for 

object detection by extracting relevant features from the 
raw image data. The features serve as input for machine 

learning models. The process allows the use of pre-defined 

extraction methods (RGB or Grayscale) or create custom 
methods using processing blocks. Feature generation 

groups the image data to show how similar the images are 

to one another of the same label. Feature generation de-
scribes the structure of the data and can be a predictor of 

the training results. Below is an image of the feature map 

of the training images 
The feature map shows that the images do not group very 

well. This may be due to the small size of the training data 

set. With a larger and better-labelled dataset, the images 
may generate a better feature map. 

 
 

Object detec-

tion 

This is one of the most important stages in the project. This 

stage involves passing the pre-processed images as input to 
the pre-trained model (YOLOv5) for training. Different pa-

rameters produce different results for post training. The 

main task at this stage to find the best parameters that pro-
duce the best results. The Edge Impulse platform provides 

a lot of assistance at this stage by recommending settings 

and parameters for the training of the model. The recom-
mended parameters do not always produce the best results 

but serve as a starting point for the training of the model. 

Below shows the parameters used for training the model 
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The initial step in any machine learning training process involves verifying the data to ensure quality 

and accuracy. In this project, the data consisted of images with their corresponding bounding box labels. 

The cleaning process ensured that the model was trained on correctly labeled images to produce accurate 

results. Additionally, data augmentation was applied to artificially expand the training dataset by gen-

erating modified versions of existing images, which improves model performance and generalization. 

Augmentation techniques included horizontal flips, 90-degree rotations, random blurs, random satura-

tion, and random brightness adjustments. After cleaning and augmentation, a total of 4,280 images were 

prepared. These images were automatically split by the Edge Impulse platform into 70% for training 

(3,741 images), 20% for validation (361 images), and 10% for testing (178 images). 

The training process followed the cleaning and augmentation steps and involved image pre-pro-

cessing, running training cycles, and validating results by assessing performance metrics. The Edge 

Impulse platform facilitated the training and validation process by recommending optimal parameters. 

The training process on Edge Impulse included the creation of impulses, feature generation, and object 

detection. Detailed explanation of the steps is provided in Table 2, and corresponding images are de-

picted in Figure 5. 

The mobile software application platform serves as the interface between the user and the trained 

model, providing information about the disease detected by the model. The operational process of the 

mobile application is outlined below. 

1) The user either captures an image of the tomato leaf using the in-built camera on-site or uploads an 

image from the phone’s gallery. 

2) The image undergoes pre-processing to remove potential interferences.  

3) The inference output is processed. 

4) The processed output, including bounding box coordinates for the detected sections, is overlaid on 

the image. 

The mobile app's frontend and backend were developed using the Flutter framework [32]. Flutter was 

selected for its suitability in mobile application development and its packages that support machine 

learning functionalities. The inferencing stage utilizes the ‘tflite_flutter’ package [35], developed by 

TensorFlow specifically for tflite models. This version of the trained model is optimized for devices 

with low computational resources, such as mobile devices. During the mobile image processing stage, 

the input image is converted to the required format for the model. The output results are formatted by 

class confidence and class score, the best bounding boxes are selected, and the bounding boxes and 

labels are adjusted to fit the original image. 

To convert the input image to the required format, it is essential to understand the image size specifi-

cations of the model. These specifications can be determined using tools such as Netron [36]. Since the 

model was trained with dimensions of 640x640, the input image must be resized accordingly. Inference 

cannot proceed without resizing the image to the correct dimensions. Additionally, the image must be 

rescaled and transformed into a suitable matrix format.  

During inference, the model generates multiple results, which include bounding boxes and class la-

bels. For the tflite model, it produces 25,200 results, each containing bounding box coordinates and class 

confidence scores. The class confidence score indicates whether a detected bounding box corresponds 

to any of the output classes. To ensure accuracy, only bounding boxes with a class confidence score 

above a defined threshold are selected. A threshold of 0.8 was chosen to include only detections with 

80% or greater certainty.  

The output data also contains class scores for all output classes. These scores indicate the class to 

which a bounding box belongs. A class score threshold of 0.5 is applied, and bounding boxes are dis-

carded if all class scores fall below this threshold. The highest-class score is then used to assign a label 

to the bounding box.  

To adapt the bounding box data to the original image, mathematical computations are required. The 

output includes normalized x, y, width, and height coordinates (ranging from 0 to 1) for each bounding 

box. These normalized coordinates are converted to actual coordinates on the original image. Additional 

computations are performed to ensure the bounding boxes fit appropriately within the mobile device 

display.  

The mobile software application interface serves as the frontend of the application, facilitating inter-

actions between the user and the backend. It enables users to capture images using the camera or select 

images from the gallery. Additionally, it displays the bounding boxes generated after detection. The red 
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circle highlights the name of the software application. The blue arrow at the center indicates the ‘NO 

PHOTO’ image, signaling that no image has been uploaded for detection. The brown arrow points to 

the camera button, which allows the user to capture images of the tomato leaf using the inbuilt camera. 

The black arrow identifies the gallery button, which enables users to upload images from the device 

gallery. Finally, the red arrow points to the detect button, which initiates inference on the uploaded 

image. 

When an image is captured or uploaded, the 'NO PHOTO' placeholder is replaced with the tomato 

leaf image. The user can then press the detect button to perform inference on the uploaded image.  

IV. RESULTS AND DISCUSSION 

The tomato disease model was successfully trained and tested on 539 test images, which included 

samples from each disease class to ensure unbiased test results. Figure 6 displays some images from the 

testing phase. The results indicate that most detections were accurate. After exporting and integrating 

the model into the mobile app, the application was tested using images from the test split of the dataset. 

Additional testing was conducted on a small tomato farm with approximately 25 tomato plants, all at 

the same growth stage (pre-fruit). The farm is shown in Figure 7. 

Using the camera feature of the mobile app, tomato leaves were tested on-site for diseases. Testing 

was performed during the afternoon and early evening to assess the impact of time of day. Two devices, 

a Samsung Galaxy S9 and a Samsung A02, were used to evaluate performance across different hard-

ware. Three scenarios were considered: the effect of time of day, device type, and camera angles.  

   

   

Figure 6. Screenshots from the training phase 

 

 
Figure 7. Tomato farm used for testing 
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For the time-of-day scenario, one set of crops was tested around noon, and another set around 5 p.m., 

when lighting conditions were moderate (not too dark or too bright). The results showed consistent 

model performance in both scenarios, with no significant impact from the time of day. This consistency 

is likely due to the dataset containing augmented images, which make the model robust under various 

lighting conditions, except in very dark settings.  

For the device comparison, the same five crops were tested using both the Galaxy S9 and the A02 to 

assess the impact of device type on results. The detected outcomes remained consistent across devices, 

with differences observed only in inference time. The Galaxy S9 had an average inference time of 4,192 

ms per image, while the A02 recorded an average of 6,801 ms per image. 

Observing inference results across both devices revealed that camera angles significantly influenced 

the outcomes. Images where the leaves were directly facing the camera produced good results. Con-

versely, in images where the leaves were not directly facing the camera, the number of detected results 

decreased, and in some cases, no detections were made. Figure 8 illustrates examples of testing with 

different camera angles. 

After testing multiple images under various conditions, the results showed that most crops were clas-

sified as healthy, with only one instance of leaf mosaic detected. Figure 9 provides screenshots of de-

tections conducted on-site. 

TABLE 3 

INFERENCE TIMES FOR DIFFERENT DEVICES 

Crop (#) Galaxy S9 interface (ms) Galaxy A02 interface (ms) 

1 4521 7048 

2 4041 7443 
3 3966 5963 

4        4323        6542 

5 4111 7010 
Average 4192 6801 

 

  
Figure 8. Camera angle testing 

 

    
Figure 9. On-site testing results 
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Following parameter configuration, the training and validation processes began with the definition of 

hyperparameters. The code snippet below specifies the hyperparameters used during training: hyperpa-

rameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, 

warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, 

iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, trans-

late=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, 

copy_paste=0.0. 

Among these, the most critical hyperparameters are the learning rate, momentum, and weight decay. 

The learning rate determines the step size during optimization and controls how quickly the model min-

imizes the loss function. In this case, a learning rate of 0.01 was selected as it ensures effective conver-

gence. Momentum accelerates gradient descent in the correct direction while reducing oscillations, pro-

moting consistent convergence; this parameter was set at 0.937. Weight decay mitigates overfitting by 

adding a penalty to the loss function, encouraging smaller model weights; its value was set at 0.0005. 

These values were key to achieving successful training outcomes.  

The hyperparameter values were optimized through multiple tests and trials to achieve the best results. 

The optimization algorithm employed was SGD (Stochastic Gradient Descent), which updates the model 

parameters during training. After setting the hyperparameters, the next step involved freezing certain 

layers of the model. Freezing layers is a technique used to control how weights are updated during 

training. The weights of frozen layers remain unchanged throughout subsequent training iterations. This 

method is particularly beneficial for small datasets paired with large models, as it reduces training time 

without significantly affecting training outcomes. In this process, 183 layers were frozen. Below is a 

code snippet showing the freezing of the first 10 layers:  

freezing model.0.conv.weight  

freezing model.0.bn.weight  

freezing model.0.bn.bias  

freezing model.1.conv.weight  

freezing model.1.bn.weight  

freezing model.1.bn.bias  

freezing model.2.cv1.conv.weight  

freezing model.2.cv1.bn.weight  

freezing model.2.cv1.bn.bias  

freezing model.2.cv2.conv.weight 

Following the freezing of layers, the training and validation cycles commenced. During each cycle, 

metrics such as precision, mean Average Precision (mAP), and loss were calculated. Weights were con-

tinually readjusted to optimize the model's performance. At the end of the training process, the best-

performing version of the model was selected as the final model.  

The training stage lasted 14.5 hours and yielded a training precision score of 80.2%. Other metrics 

assessed during training included accuracy, recall, and mAP. Precision, a key metric, measures the pro-

portion of correctly predicted positives. It is defined by (1). 

𝑃 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (1) 

TABLE 4 

SUMMARY OF TRAINING RESULTS 

Class Images Instances Precision Recall mAP5@.5 mAP@.5:.95 

all 749 9697 0.746 0.711 0.715 0.407 

Bacterial spot 749 239 0.683 0.615 0.627 0.294 

Early blight 749 963 0.776 0.75 0.778 0.412 
fusarium 749 491 0.762 0.766 0.753 0.438 

healthy 749 1667 0.791 0.792 0.823 0.568 

Late blight 749 2185 0.711 0.681 0.681 0.343 
Leaf curl 749 278 0.772 0.731 0.674 0.443 

mosaic 749 121 0.82 0.744 0.802 0.526 

septoria 749 3753 0.677 0.62 0.613 0.268 
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Accuracy is the ratio of correct predictions to the total number of predictions, providing an overall 

measure of the model's performance across all classes. Recall, which reflects the model's ability to iden-

tify all relevant instances, is a combination of precision and accuracy. Mean Average Precision (mAP) 

compares ground-truth bounding boxes to detected boxes and provides a performance score. Average 

Precision (AP) represents the number of bounding boxes that meet an Intersection over Union (IoU) 

threshold. The IoU measures how well a predicted bounding box aligns with the ground truth. At an IoU 

threshold of 0.5, a detection is considered correct if the overlap between the predicted box and the ground 

truth box is at least 50%. The overall mAP score is the mean of the AP scores for all classes.  

Table 4 summarizes the training results, showing that the model achieved a mAP@0.5 score of 0.715. 

This indicates that the trained model performed well in detecting tomato diseases during validation.  It 

is expected that performance could improve with a larger dataset. 

To enable deployment in a mobile application, the final model was converted to a format suitable for 

on-device inference. The tflite format is recommended for such applications due to its low resource 

requirements. The conversion from .pt to .lite format was performed automatically using the Edge Im-

pulse platform. The resulting .lite model is 88 MB in size, making it appropriate for integration into a 

mobile app. 

V. CONCLUSION 

This project successfully developed and tested machine learning models capable of detecting tomato 

diseases from images of tomato leaves. The YOLOv5 architecture used achieved a validation mAP@0.5 

of 0.715 and demonstrated strong performance during live on-site testing. Results indicate that the model 

performs reliably across different devices. Despite a few limitations, the findings have significant im-

plications for disease detection. The developed mobile software application enables users, regardless of 

their expertise in tomato diseases, to assist in disease identification, potentially reducing yield losses. 

Future work should focus on extending the models to detect a broader range of plant diseases, such as 

those affecting corn and pepper. Additionally, a secure database system should be integrated into the 

application to store detection images for future reference and learning. Expanding the models to support 

live video feeds for real-time plant disease detection would further enhance their utility. 
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