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ABSTRACT 

Optimal power flow (OPF) is a critical optimization application in power system planning and operation. Nu-

merous studies employ metaheuristic techniques to address OPF problems of varying complexity. However, these 

techniques often suffer from slow convergence due to their dependence on the quality of initial solutions. To over-

come this limitation, initial solutions must be optimally tuned to achieve good outcomes with faster convergence. 

This paper proposes an optimally tuned pattern search (OPS) algorithm to solve OPF problems in medium and 

large power systems. The tuning process, performed using the classical interior point method (IPM), provides 

optimal initial control variable values for the standard pattern search (PS) algorithm. The proposed technique is 

applied to three test systems: IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems. The OPF problem is formu-

lated to minimize four objectives: total active power loss, total generator fuel cost, total generator emission, and 

total deviation in load bus voltage magnitude. The performance of the OPS algorithm is evaluated based on ob-

jective function values and computation times and is compared with IPM and two popular metaheuristic tech-

niques, particle swarm optimization (PSO) and genetic algorithm (GA). Results indicate that the OPS algorithm's 

performance varies across test systems but generally balances optimization performance with computational effi-

ciency. 

  

Keywords: optimal power flow, optimally tuned pattern search, power system optimization. 

 

I. INTRODUCTION 

PTIMAL power flow (OPF) is one of the most complex problems in power systems. It is applied 

in routine operations, generation and transmission expansion planning, network resiliency, and 

market analysis [1], [2]. Compared to other analyses such as load flow analysis and economic 

dispatch problems, OPF is significantly more computationally demanding [3]. OPF is an optimization 

process aimed at minimizing one or several quantities within the system. It incorporates load flow 

equations to calculate fundamental quantities such as voltage and power, making the problem nonlinear 

and nonconvex due to the nature of these equations. During optimization, constraints related to power 

balance, voltage limits, and power generation limits must be satisfied. 

The nonconvexity and nonlinearity of the OPF problem pose significant challenges for classical opti-

mization techniques, such as the interior-point method (IPM) and Newton's method [4]. This has 

prompted the adoption of metaheuristic optimization techniques, which aim to achieve global optimality 

and improve local optima for OPF problems [5]. A wide range of metaheuristic algorithms has been 

applied to OPF problems, including tabu search (TS) [6], differential evolution (DE) [7], genetic algo-

rithms (GA) and their modified versions [8], boosting cuckoo algorithms [9], particle swarm optimiza-

tion (PSO) [10], gravitational search algorithms [11], [12], teaching-learning based optimization 

(TLBO) [13], chaotic bat algorithms [14], heap optimization [15], mayfly algorithms [16], artificial bee 

colony algorithms [17], and animal migration algorithms [18]. These techniques are employed to mini-

mize one or more objective functions, such as total power loss, fuel cost, voltage deviation, or emissions. 

O 
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Consequently, OPF can be formulated as either a single-objective or a multi-objective optimization 

problem. 

Despite the advantages of the metaheuristic techniques mentioned earlier, they generally suffer from 

relatively high computation times due to the process of generating random populations. This is because 

metaheuristic techniques typically require initial values, and the quality of these initial solutions is not 

always adequate, meaning they are often far from optimal. One potential approach to enhance the effi-

ciency and effectiveness of the population generation process is to use solutions provided by faster clas-

sical techniques as initial values. Such a hybrid technique has been explored in [19], [20]. 

This paper aims to apply a hybrid technique to address the OPF problem in medium and large power 

systems. The main contribution of this study is the introduction of a novel hybrid approach, referred to 

as the optimally tuned pattern search (OPS) algorithm. This hybrid technique combines the classical 

interior-point method (IPM) with the standard pattern search (PS) algorithm. In this study, the proposed 

technique is applied to four different cases, each targeting the minimization of a distinct objective: power 

loss, fuel cost, generation emissions, and load bus voltage deviation. The objectives of this study are as 

follows: to apply the OPS algorithm for OPF with four different objective functions and compare its 

performance, in terms of objective function minimization, with those achieved by IPM, PSO, and GA; 

and to evaluate the OPS algorithm for OPF with four different objective functions and compare its com-

putational performance, in terms of computation time, with those of IPM, PSO, and GA. The proposed 

technique is particularly beneficial for addressing OPF in large power systems, where both speed and 

solution accuracy are critical.  

The structure of the paper is as follows. Section IIA presents the OPF problem formulation used in 

this study. Section IIB provides a brief overview of the PS algorithm and describes how IPM enhances 

its performance. Section IIC discusses the application of the proposed technique to the selected test 

systems. Section III presents the results and discussion. Finally, Section IV concludes the study and 

suggests potential improvements for future research. 

II. RESEARCH METHOD 

A. Problem Formulation 

A standard OPF problem can be formulated as a constrained nonlinear optimization problem, as ex-

pressed in (1) which is subject to (2) and (3) where 𝑥 represents the vector of control variables, u repre-

sents the vector of dependent variables, 𝐽(x, u) is the objective function to optimize, 𝑔(x, u) = 0 is the 

set of equality constraints, and ℎ(x, u) ≤ 0 is the set of inequality constraints. The control and dependent 

variables for each test system used in this study are presented in Table 1. 

Both control and dependent variables must remain within their respective maximum and minimum 

limits [21]. This requirement is mathematically defined by the constraints in (4)-(10) where 𝑃𝐺 is the 

active power generation at generator bus, 𝑃𝐺𝑠 is the active power generation at the slack bus, 𝑉𝐺 is the 

voltage magnitude at the generator bus, 𝑄𝐶  is the MVAR supplied by the shunt device, 𝑇 is the tap 

setting of the transformer, 𝑉𝐿 is the voltage at load bus, 𝑁𝐺  is the number of generator buses (including 

the swing bus), 𝑁𝐶  is the number of shunt devices, 𝑁𝑇  is the number of tap-changing transformers, and 

𝑁𝐿 is the number of load buses.  

Equations (4)-(7) pertain to the control variables, while Equations (8)-(10) pertain to the dependent 

variables. Note that (4) assumes the slack bus is located at bus 1 for simplicity in notation. This assump-

tion is solely for convenience and does not limit the applicability of the formulation to systems with a 

slack bus at any other location. The enforcement of the dependent variable limits in Equations (8)-(10) 

is implemented by incorporating a penalty function into the objective function. This penalty function is 

defined as shown in (11) where 𝜆𝑃 , 𝜆𝑉, and 𝜆𝑄  are the penalty factors. The value 𝑢lim, representing the 

violated limit of the dependent variable 𝑢, is defined in (12). 

TABLE 1 

CONTROL AND DEPENDENT VARIABLES USED IN THE STUDY 

Control Variables Dependent Variables 

𝑃𝐺 

𝑉𝐺 

𝑇 

𝑄𝐶 

Active power generation at PV buses 

Voltage magnitude at generator buses, including the slack bus 

Tap setting of transformers 

Shunt MVAR compensation 

𝑃𝐺𝑠 

𝑉𝐿 

𝑄𝐺 

Active power generation at the slack bus 

Voltage magnitude at load buses 

Reactive power generation at generator buses including 

the slack bus 
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 Minimize 𝐽(𝐱, 𝐮) (1) 

 𝑔(𝐱, 𝐮) = 0 (2) 

 ℎ(𝐱, 𝐮) ≤ 0 (3) 

 𝑃𝐺𝑖
min ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

max       𝑖 = 2, … , 𝑁𝐺 (4) 

 𝑉𝐺𝑖
min ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

max       𝑖 = 1,2, … , 𝑁𝐺 (5) 

 𝑇𝑖
min ≤ 𝑇𝑖 ≤ 𝑇𝑖

max       𝑖 = 1,2, … , 𝑁𝑇 (6) 

 𝑄𝐶𝑖
min ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

max     𝑖 = 1,2, … , 𝑁𝐶 (7) 

 𝑃𝐺𝑠
min ≤ 𝑃𝐺𝑠 ≤ 𝑃𝐺𝑠

ma𝑥 (8) 

 𝑉𝐿𝑖
min ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

max       𝑖 = 1,2, … , 𝑁𝐿 (9) 

 𝑄𝐺𝑖
min ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

max     𝑖 = 1,2, … , 𝑁𝐺 (10) 

 

Penalty = 𝜆𝑃(𝑃𝐺𝑠 − 𝑃𝐺𝑠
lim)

2
+ 𝜆𝑉 ∑(𝑉𝐿𝑖 − 𝑉𝐿𝑖

lim)
2

𝑁𝐿

𝑖=1

+ 𝜆𝑄 ∑(𝑄𝐺𝑖 − 𝑄𝐺𝑖
lim)

2

𝑁𝐺

𝑖=1

 (11) 

 

𝑢lim = {
𝑢max        𝑢 > 𝑢max

𝑢min        𝑢 < 𝑢min 
 (12) 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐺𝑘[𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗 cos(𝜃𝑖 − 𝜃𝑗)]

𝑛𝑡𝑙

𝑘=1

       MW (13) 

 

𝐹 = ∑ 𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖𝑃𝐺𝑖
2

𝑁𝐺

𝑘=1

     $/h (14) 

 

Emission = ∑ 𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 + 𝜔𝑖𝑒𝜇𝑖𝑃𝐺𝑖

𝑁𝐺

𝑘=1

     ton/h (15) 

 

Emission = ∑ 𝛿𝑖𝑃𝐺𝑖

𝑁𝐺

𝑘=1

      ton/h (16) 

 

𝑉𝐷 = ∑ |𝑉𝐿 − 1|

𝑁𝐿

𝑖=1

 (17) 

This study minimizes four objective functions independently. The first objective function is the total 

active power loss, expressed by (13) where 𝑛𝑡𝑙 is the number of transmission lines, 𝑖 and 𝑗 are the indices 

of the buses connected by line 𝑘, 𝐺𝑘 is the conductance of line 𝑘, 𝑉𝑖 is the voltage magnitude at bus 𝑖, 
𝑉𝑗  is the voltage magnitude at bus 𝑗, 𝜃𝑖 is the voltage angle at bus 𝑖, and 𝜃𝑗  is the voltage angle at bus 𝑗. 

The second objective function is the total generation fuel cost, given by (14) where 𝑎, 𝑏, and 𝑐 are the 

cost coefficient of the generator. The third objective function is the total generation emission, for which 

two formulations are used. The first formulation is expressed in (15) where 𝛼, 𝛽, 𝛾, 𝜔, and 𝜇 are the 

emission coefficients of the generator. The second formulation, a simplified linear model [22], is ex-

pressed in (16). As detailed in Section II.C, (15) and (16) are applied to different test systems. The fourth 

objective function is the deviation of load bus voltage magnitude from the nominal value. Given that the 

nominal bus voltage is 1 pu, this deviation is formulated in (17). 

The objective functions in (13)-(17) depend on bus power injection and bus voltage, which are ob-

tained from the load flow study. Therefore, the load flow computation accompanies the construction of 

these objective functions, as illustrated in Figure 1. From an optimization perspective, both control and 

dependent variables contribute to the objective functions defined in (13)-(17). As shown in Figure 1, 

some variables have a direct impact on the objective function, while others influence the function indi-

rectly through load flow computations. For instance, in the case of active power loss, the variables that 
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directly affect the loss are the voltages at the generator buses 𝑉𝑔 and their associated angles 𝜃𝑔, as well 

as the voltages at the load buses 𝑉𝑙 and their associated angles 𝜃𝑙. Consequently, other variables do not 

directly influence the power loss. 

To simplify the problem formulation, the OPF problems with the four objective functions in (13)-(17) 

are categorized as Case 1, Case 2, Case 3, and Case 4. With the inclusion of the penalty function, the 

objective functions for these cases are summarized in Table 2. 

To evaluate the effectiveness of the proposed technique, in addition to using the OPS algorithm, all 

OPF problems described above are also solved using three other algorithms: IPM, PS, and GA. The 

MATLAB implementation of these algorithms for the formulated problems is detailed in Section IIC. 

For each case and algorithm, the achieved objective function value and the computation time required 

to solve the problem are recorded. An algorithm is considered successful if it converges to optimal or 

near-optimal values and ensures that all dependent variables remain within the specified limits. This 

criterion is also examined during the study. 

B. Pattern Search Algorithm 

The Pattern Search (PS) algorithm is a metaheuristic optimization method classified as a direct search 

technique [23]. It is widely used to solve gradient-free optimization problems. As a direct search method, 

PS employs a straightforward search process involving the sequential evaluation of trial solutions. This 

sequence creates a mesh around the initial solution and iteratively approaches an optimal solution. Each 

trial solution is compared to the best solution obtained so far, guiding the selection of subsequent trial 

solutions. This process ensures convergence to near-optimal solutions. 

The algorithm begins by generating a random point, which serves as the initial solution and is desig-

nated as the first base point. In subsequent iterations, another random trial point is selected for explora-

tory evaluation and compared to the preceding solution. If the fitness function value of the trial point is 

better, it replaces the previous base point. In such cases, an expansion coefficient is applied to generate 

new solutions, increasing the mesh size. Conversely, if the trial point does not yield a better fitness 

value, a contraction coefficient is applied, reducing the mesh size. The process terminates when the 

mesh size becomes smaller than a predefined threshold. For a more detailed explanation of the PS algo-

rithm, readers are referred to [23]. 

As with other algorithms, the speed of convergence depends significantly on the initial solutions, 

which serve as the first base points [24], [25]. Solutions closer to the optimal values facilitate faster 

convergence. To achieve this condition, optimal initial values are provided to the algorithm by first 

solving the OPF problems using the Interior Point Method (IPM). The solutions from IPM are then used 

as the initial solutions for the PS algorithm, creating the optimally tuned Pattern Search (OPS) algorithm. 

The performance of OPS is compared to that of three other algorithms in this study. 

C. Application and Implementation 

The problem formulated in Section IIA is applied to three test systems: IEEE 30-bus, IEEE 57-bus, 

and IEEE 118-bus. Data for the IEEE 30-bus and IEEE 57-bus systems are sourced from [26], while 

data for the IEEE 118-bus system are obtained from [27]. These datasets include bus, branch, and gen-

erator data (such as cost coefficients and emission coefficients). The main characteristics of these sys-

tems are summarized in Tables 3, 4, and 5. As outlined in Section IIA, two formulations are used for the 

emission functions: Expressions (15) and (16). Expression (15), which is nonconvex and nonlinear, is 

TABLE 2 

FORMULATIONS OF OBJECTIVE FUNCTIONS USED IN THE STUDY 

Case Objective Function 

Case 1 𝐽(𝑥, 𝑢) = 𝑃loss + Penalty 

Case 2 𝐽(𝑥, 𝑢) = 𝐹 + Penalty 

Case 3 𝐽(𝑥, 𝑢) = Emission + Penalty 

Case 4 𝐽(𝑥, 𝑢) = 𝑉𝐷 + Penalty 

 

Load flow 

computation

Pg, Vg, T, QC
Eqs. (13)-(17)

Vg, qg, Pg, Qg, Vl, ql Objective 

functions

 
Figure 16. Construction of the objective functions used in the study 
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applied to the IEEE 30-bus and IEEE 57-bus systems. In contrast, Expression (16), which is linear, is 

applied to the IEEE 118-bus system.  

TABLE 3 

MAIN CHARACTERISTICS OF THE IEEE 30-BUS SYSTEM 

System Characteristics Number Details 

Buses 30 [28] 

Branches 41 [28] 

Generators 6 Buses: 1, 2, 5, 8, 11, and 13 

Shunts 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24, and 29 

Tap-changing transformers 4 Branches: 6-9, 6-10, 4-12, and 28-27 

Control variables 24 - 

Dependent variables 31 - 

TABLE 4 

MAIN CHARACTERISTICS OF THE IEEE 57-BUS SYSTEM 

System Characteristics Number Details 

Buses 57 [28] 

Branches 80 [28] 

Generators 7 Buses: 1, 2, 3, 6, 8, 9, and 12 

Shunts 3 Buses: 18, 25, and 53 

Tap-changing transformers 17 Branches: 4-18, 4-18, 21-20, 24-25, 24-25, 24-26, 7-29, 34-32, 11-41, 15-45, 14-46, 10-51, 13-49, 

11-43, 40-56, 39-57, 9-55 

Control variables 33 - 

Dependent variables 58 - 

TABLE 5 

MAIN CHARACTERISTICS OF THE IEEE 118-BUS SYSTEM 

System Characteristics Number Details 

Buses 118 [29] 

Branches 186 [29] 

Generators 54 Buses: 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 

61, 62, 65, 66, 69, 70, 72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 105, 107, 

110, 111, 112, 113, 116 

Shunts 14 Buses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105, 107, 110 

Tap-changing transform-

ers 

9 Branches: 8-5, 26-25, 30-17, 38-37, 63-59, 64-61, 65-66, 68-69, 81-80 

Control variables 130 - 

Dependent variables 119 - 

TABLE 6 

CONTROL PARAMETERS FOR THE ALGORITHMS USED IN THE STUDY 

Algorithm 

 / Solver 
Control Parameter 

Value 
Description 

30-bus 57-bus 118-bus 

IPM 

(fmin-

con) 

Maximum number of function evaluations 3000 3000 100000 Iterations end when any of these values are 

reached Maximum number of iterations 1000 1000 1000 

Termination tolerance on the first-order optimality 10-6 10-6 10-6 

Termination tolerance on 𝑥, that is a lower 

bound on the size of a step 

10-10 10-10 10-10 

Tolerance on the constraint violation 10-6 10-6 10-6 

PSO Number of particles in the swarm 100 100 100 - 

Maximum number of iterations 4800 6600 26000 Iterations end when this value is reached 

Termination tolerance on the function value 10-6 10-6 10-6 Iterations end when the relative changes in the 

best objective function value over 𝑛𝑖 iterations 

are less than termination tolerance on the func-

tion value 

Maximum number of stall iterations 𝑛𝑖 20 20 20 

GA Tolerance on the constraint violation 10-3 10-3 10-3 Iterations end when any of these values are 

reached Maximum number of generations 2400 3300 13000 

Termination tolerance on the function value 10-6 10-6 10-6 The algorithm stops if the average relative 

changes in the best fitness function value over 𝑛𝑔 

generations are less than or equal to termination 

tolerance on the function value 

Maximum number of stall generations 𝑛𝑔 50 50 50 

OPS Tolerance on the constraint violation 10-6 10-6 10-6 Iterations stop when any of these values are 

reached Maximum number of iterations 2400 3300 13000 

Tolerance on mesh size 10-6 10-6 10-6 

Maximum number of objective function evalua-

tions 

48000 66000 260000 

Termination tolerance on the function value 10-6 10-6 10-6 Iterations stop if the change in function value is 

less than this value and the mesh size is less than 

tolerance on the variable 

Tolerance on the variable 10-6 10-6 10-6 Iterations stop if both the change in position and 

the mesh size are less than tolerance on the vari-

able 

 

 



Jurnal ELTIKOM :  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

168 

The algorithms used in this study—IPM, PSO, GA, and the proposed OPS—are implemented in 

MATLAB, utilizing the Optimization and Global Optimization Toolboxes. Specifically, IPM, PSO, and 

GA are solved using the fmincon, particleswarm, and ga solvers, respectively. 

In addition to the optimization routines, Matpower [30] is employed to perform the load flow compu-

tations required for constructing the objective functions. The initial values needed by fmincon are ob-

tained from a basic state simulation, which involves using the primary data provided by the test systems 

without imposing dependent variable limits. Meanwhile, the OPS algorithm is solved using the pat-

ternsearch solver, with its initial values supplied by fmincon.  

The framework of MATLAB implementation for each optimization routine (solver) and case used in 

this study is illustrated in the flowchart in Figure 2. The control parameters for the algorithms employed 

in this study are summarized in Table 6. 

Start

Establish x and the corresponding lb and ub

Run basic load flow using Matpower

Get the values of x from the system data 

and consider them as the elements of x0

Construct objective function

Formulate the optimization problem

Initiate the iteration: iter = 1

Execute the optimization algorithm

Update x

Stopping criterion 

fulfilled?

iter = iter +1

no

Get the final values of x, fval, and other 

necessary data

Run load flow using Matpower

Calculate fval

End

internal process/

iteration in MATLAB 

optimization routine

x     : vector of control variables

lb    : lower bound for x
ub   : upper bound for x
x0    : initial value of x
fval : value of objective function

yes

Note:

• x0 is only required for 

fmincon routine. PSO and 

GA do not require it.

• For OPS, x0 is the result 

achieved by fmincon

 
Figure 17. Framework of MATLAB implementation for each case and algorithm used in the study 
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D. Assumptions and Limitations 

This section outlines the assumptions and limitations associated with the proposed algorithm. In this 

study, the focus is on the algorithm itself; therefore, the proposed algorithm is tested only on conven-

tional power systems, i.e., systems without any integration of renewable energy sources. Nonetheless, 

the proposed algorithm can be extended to systems that include renewable energy technologies, such as 

solar photovoltaics and wind turbines.  

Two scenarios arise when considering the inclusion of renewable energy. In the first scenario, uncer-

tainties associated with renewable energy technologies are ignored, assuming their output powers are 

perfectly predictable. Under this assumption, buses with renewable energy technologies are treated as 

voltage-controlled buses. Consequently, the computational complexity remains largely unchanged, as 

the only new components introduced are additional voltage-controlled buses.  

In the second scenario, the uncertainties in renewable energy outputs are accounted for, requiring the 

use of stochastic optimization techniques. In such cases, the problem becomes more complex, as the 

uncertain outputs from renewable sources must be modeled as random variables. While the proposed 

algorithm can still be applied, its effectiveness will depend on how these random variables are man-

aged—a consideration beyond the scope of this study and the proposed algorithm.  

III. RESULTS AND DISCUSSION 

This section presents and discusses the results for each test system. For each system, the load flow 

computation results at the basic state are provided first, followed by the optimization results. The per-

formance of the proposed OPS algorithm is analyzed in two aspects: objective function value minimi-

zation and computation time. Additionally, performance charts are included to visualize and compare 

the OPS algorithm's performance with other algorithms used in this study. All computations were per-

formed on an 11th Gen 1.40 GHz Core i7 personal computer with 32 GB of RAM. 

TABLE 7 

RESULTS OF THE LOAD FLOW COMPUTATION ON THE IEEE 30-BUS SYSTEM AT BASIC STATE 

Variable 
Limit 

Value Variable 
Limit 

Value 
Low High Low High 

Control variables Dependent variables 

Generator bus 

voltage (pu) 

V1 0.95 1.1 1.05 Voltage at load 

buses (pu) 

V3 0.95 1.1 1.012 

V2 0.95 1.1 1.04 V4 0.95 1.1 1.003 

V5 0.95 1.1 1.01 V6 0.95 1.1 1.003 

V8 0.95 1.1 1.01 V7 0.95 1.1 0.998 

V11 0.95 1.1 1.05 V9 0.95 1.1 1.022 

V13 0.95 1.1 1.05 V10 0.95 1.1 1.005 

Shunt MVAR  QC10 0 5 0 V12 0.95 1.1 1.033 

QC12 0 5 0 V14 0.95 1.1 1.016 

QC15 0 5 0 V15 0.95 1.1 1.009 

QC17 0 5 0 V16 0.95 1.1 1.014 

QC20 0 5 0 V17 0.95 1.1 1.003 

QC21 0 5 0 V18 0.95 1.1 0.995 

QC23 0 5 0 V19 0.95 1.1 0.990 

QC24 0 5 0 V20 0.95 1.1 0.993 

QC29 0 5 0 V21 0.95 1.1 0.993 

Transformer tap T6-9 0.9 1.1 0.978 V22 0.95 1.1 0.993 

T6-10 0.9 1.1 0.969 V23 0.95 1.1 0.994 

T4-12 0.9 1.1 0.932 V24 0.95 1.1 0.983 

T28-27 0.9 1.1 0.968 V25 0.95 1.1 0.990 

Power genera-

tion at PV buses 

(MW) 

PG2 20 80 40 V26 0.95 1.1 0.972 

PG5 15 50 0 V27 0.95 1.1 1.003 

PG8 10 35 0 V28 0.95 1.1 1.000 

PG11 10 30 0 V29 0.95 1.1 0.983 

PG13 12 40 0 V30 0.95 1.1 0.971 

 𝑃𝑠𝑙𝑎𝑐𝑘 (MW) PG1 50 200 261.693 

Reactive power 

generation at gen-

erator buses 

(MVAR) 

QG1 0 10 -29.972 

Quantities to optimize QG2 -40 50 66.908 

𝑃𝑙𝑜𝑠𝑠 (MW) 18.293 QG5 -40 40 42.090 

𝑉𝐷 (pu) 0.266 QG8 -10 40 57.051 

𝐹 ($/h) 878.198 QG11 -6 24 14.369 

Emission (ton/h) 0.908 QG13 -6 24 12.468 
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A. IEEE 30-Bus System 

Table 7 shows the results of the load flow computation for the IEEE 30-bus system at the basic state. 

The table includes the values of control variables, dependent variables, and the four quantities to be 

optimized. It is important to note that the load flow computation at this state does not enforce the limits 

on dependent variables. Consequently, many dependent variable values exceed their permissible limits. 

TABLE 8 

OPTIMAL VALUES OF CONTROL VARIABLES FOR IEEE 30-BUS SYSTEM AT CASE 1 AND CASE 2 

Variable 
Case 1 Case 2 

IPM PSO GA OPS IPM PSO GA OPS 

V1 1.073 1.100 1.079 1.073 1.100 1.100 1.100 1.100 

V2 1.063 1.093 1.071 1.067 1.079 1.081 1.085 1.080 

V5 1.043 1.075 1.055 1.047 1.053 1.054 1.050 1.055 

V8 1.052 1.082 1.062 1.052 1.062 1.062 1.039 1.063 

V11 1.053 1.100 1.100 1.100 1.093 1.100 1.061 1.100 

V13 1.053 1.100 1.100 1.093 1.087 1.100 1.047 1.100 

QC10 2.616 5.000 4.999 5.000 3.599 4.994 1.338 5.000 

QC12 2.554 4.998 5.000 5.000 3.476 4.992 0.069 5.000 

QC15 2.659 4.288 4.998 5.000 3.527 4.976 1.897 5.000 

QC17 2.679 5.000 5.000 5.000 3.914 4.999 4.123 5.000 

QC20 2.691 3.524 3.944 4.269 3.625 4.343 4.396 4.299 

QC21 2.774 5.000 4.999 5.000 4.230 4.999 4.970 5.000 

QC23 2.708 2.272 2.584 2.770 3.284 2.814 2.558 2.698 

QC24 2.866 5.000 5.000 5.000 4.268 5.000 4.970 5.000 

QC29 2.562 2.019 2.069 2.199 2.534 2.381 2.395 2.314 

T6-9 0.998 1.050 1.013 1.003 1.002 1.022 1.023 1.029 

T6-10 0.987 0.901 0.902 0.900 0.939 0.900 0.940 0.900 

T4-12 1.006 0.984 0.968 0.947 0.972 0.965 0.969 0.973 

T28-27 0.990 0.969 0.949 0.942 0.965 0.953 0.977 0.956 

PG2 73.232 80.000 80.000 80.000 48.606 48.656 51.486 48.602 

PG5 48.252 50.000 50.000 50.000 21.326 21.342 21.583 21.304 

PG8 32.749 35.000 35.000 35.000 20.980 20.997 22.442 21.012 

PG11 27.853 30.000 30.000 30.000 12.010 11.899 12.154 11.850 

PG13 36.529 40.000 39.999 40.000 12.299 12.002 12.076 12.000 

𝑃𝑙𝑜𝑠𝑠 (MW) 3.535 2.843 2.928 2.953 8.667 8.617 8.754 8.629 

𝐹 ($/h) 931.200 967.048 967.251 967.313 799.297 799.035 800.651 799.046 

Emission (ton/h) 0.221 0.221 0.221 0.221 0.368 0.368 0.356 0.369 

𝑉𝐷 (pu) 0.701 2.043 1.959 1.906 1.641 1.978 0.926 1.929 

TABLE 9 

OPTIMAL VALUES OF CONTROL VARIABLES FOR IEEE 30-BUS SYSTEM AT CASE 3 AND CASE 4 

Variable 
Case 3 Case 4 

IPM PSO GA OPS IPM PSO GA OPS 

V1 1.048 1.099 1.065 1.047 1.045 1.015 1.043 1.045 

V2 1.030 1.091 1.052 1.039 1.026 1.008 1.021 1.026 

V5 1.013 1.072 1.023 1.020 1.012 1.009 1.000 1.012 

V8 1.021 1.079 1.030 1.028 1.001 1.006 0.998 1.001 

V11 1.030 1.098 1.069 1.096 1.044 1.042 1.079 1.044 

V13 1.029 1.100 1.068 1.099 1.033 1.001 1.024 1.033 

QC10 2.705 4.898 0.258 5.000 2.502 5.000 0.209 0.193 

QC12 3.082 0.004 4.920 5.000 2.979 0.233 0.332 0.000 

QC15 2.923 4.887 4.535 5.000 2.772 4.998 5.000 0.016 

QC17 2.750 4.329 4.937 5.000 2.513 0.162 0.009 0.000 

QC20 2.768 3.748 3.671 4.349 2.468 5.000 5.000 5.000 

QC21 2.685 4.740 4.947 5.000 2.439 4.998 3.041 5.000 

QC23 2.775 2.003 2.980 2.690 2.536 4.762 4.915 5.000 

QC24 2.638 4.996 4.948 5.000 2.501 5.000 4.999 5.000 

QC29 2.406 2.192 2.707 2.260 2.504 0.609 0.000 1.458 

T6-9 0.997 1.048 1.004 0.956 0.985 1.059 0.953 0.985 

T6-10 1.000 0.901 0.951 0.901 0.979 0.900 1.045 0.979 

T4-12 1.003 0.965 1.057 0.933 0.999 0.965 1.009 0.999 

T28-27 0.999 0.966 0.979 0.920 0.958 0.949 0.944 0.958 

PG2 47.765 70.835 71.067 70.903 49.965 79.990 32.313 25.568 

PG5 33.473 50.000 49.985 50.000 29.613 49.999 15.011 29.613 

PG8 28.575 35.000 34.945 35.000 23.548 34.980 10.006 20.613 

PG11 21.315 30.000 29.941 30.000 18.511 30.000 28.580 30.000 

PG13 35.720 32.822 32.811 32.822 28.415 39.995 12.067 17.631 

𝑃𝑙𝑜𝑠𝑠 (MW) 5.942 3.103 3.496 3.329 7.188 3.547 10.879 8.052 

𝐹 ($/h) 842.311 932.837 933.936 933.521 821.371 968.661 820.379 826.233 

Emission (ton/h) 0.262 0.217 0.218 0.217 0.287 0.222 0.428 0.340 

𝑉𝐷 (pu) 0.322 2.013 0.710 1.787 0.183 0.096 0.156 0.146 
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Therefore, the optimization process not only aims to minimize the objective function values but also 

ensures that all dependent variable values are within the allowable range as defined by the constraints. 

The optimized values of control variables and objective functions are presented in Tables 8 and 9. For 

the IEEE 30-bus system, no violations of dependent variable limits are observed, indicating that all 

algorithms are successful in meeting the constraints. The comparison of objective function value mini-

mization among the algorithms is conducted for each case.  

Across all cases, the proposed OPS and other algorithms successfully reduce the objective function 

values compared to those at the basic state. However, a general trend is observed: PSO, GA, and the 

proposed OPS consistently outperform IPM by significant margins, except in Case 2, where GA exhibits 

the poorest performance. PSO emerges as the top performer in all cases, followed by the proposed OPS, 

except in Case 1, where it performs slightly worse than GA. 

Figure 3 illustrates the computation times required by all algorithms. As shown, IPM is the fastest 

algorithm in all cases, with the proposed OPS being the second-fastest in most cases (except in Case 2). 

This indicates that for the IEEE 30-bus system, the proposed OPS offers a suitable trade-off between 

accuracy and computation time. Conversely, GA is the least recommended algorithm for this system 

(except in Case 3), given its ordinary performance in reducing objective function values and its poor 

computation time in most cases. 

 
Figure 18. Computation Time for Simulation on IEEE 30-Bus System 

 

 
Figure 19. Performance Charts of OPF on IEEE 30-Bus System 
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The performance charts of the algorithms used in this study for the IEEE 30-bus system are presented 

in Figure 4. The chart for Case 1 highlights the advantage of the proposed OPS algorithm, demonstrating 

its ability to balance objective function value minimization and computation time. As a result, OPS 

positions itself between IPM and PSO in terms of overall performance. The chart also confirms the 

relative disadvantage of GA in this case. A similar pattern is observed in Case 4, where the proposed 

OPS effectively bridges the speed advantage of IPM with the accuracy advantage of PSO. 

Different patterns emerge in Cases 2 and 3. In these cases, the proposed OPS exhibits the longest 

computation times. This drawback is not offset by superior results in terms of objective function values. 

OPS performs worse than PSO in both computation time and objective function value minimization. In 

Case 3, PSO also fails to outperform GA. Consequently, for minimizing fuel cost on the IEEE 30-bus 

system (Case 2), PSO is recommended as the best solver. For minimizing emissions (Case 3), GA is 

suggested as the most effective algorithm. 

TABLE 10 

RESULTS OF THE LOAD FLOW COMPUTATION ON THE IEEE 57-BUS SYSTEM AT BASIC STATE 

Variable 
Limit 

Value Variable 
Limit 

Value 
Low High Low High 

Control variables Dependent variables 

Generator bus 

voltage (pu) 

V1 0.95 1.1 1.04 Voltage at load 

buses (pu) 

V23 0.95 1.1 1.001 

V2 0.95 1.1 1.01 V24 0.95 1.1 0.984 

V3 0.95 1.1 0.985 V25 0.95 1.1 0.938 

V6 0.95 1.1 0.98 V26 0.95 1.1 0.945 

V8 0.95 1.1 1.005 V27 0.95 1.1 0.973 

V9 0.95 1.1 0.98 V28 0.95 1.1 0.990 

V12 0.95 1.1 1.015 V29 0.95 1.1 1.004 

Shunt MVAR QC18 0 5 0 V30 0.95 1.1 0.920 

QC25 0 5 0 V31 0.95 1.1 0.900 

QC53 0 5 0 V32 0.95 1.1 0.926 

Transformer tap T4-18 0.9 1.1 0.97 V33 0.95 1.1 0.924 

T4-18 0.9 1.1 0.978 V34 0.95 1.1 0.949 

T21-20 0.9 1.1 1.043 V35 0.95 1.1 0.958 

T24-25 0.9 1.1 1 V36 0.95 1.1 0.968 

T24-25 0.9 1.1 1 V37 0.95 1.1 0.978 

T24-26 0.9 1.1 1.043 V38 0.95 1.1 1.007 

T7-29 0.9 1.1 0.967 V39 0.95 1.1 0.976 

T34-32 0.9 1.1 0.975 V40 0.95 1.1 0.965 

T11-41 0.9 1.1 0.955 V41 0.95 1.1 0.994 

T15-45 0.9 1.1 0.955 V42 0.95 1.1 0.963 

T14-46 0.9 1.1 0.9 V43 0.95 1.1 1.008 

T10-51 0.9 1.1 0.93 V44 0.95 1.1 1.012 

T13-49 0.9 1.1 0.895 V45 0.95 1.1 1.033 

T11-43 0.9 1.1 0.958 V46 0.95 1.1 1.057 

T40-56 0.9 1.1 0.958 V47 0.95 1.1 1.029 

T39-57 0.9 1.1 0.98 V48 0.95 1.1 1.023 

T9-55 0.9 1.1 0.94 V49 0.95 1.1 1.033 

Power genera-

tion at PV 

buses (MW) 

PG2 0 100 0 V50 0.95 1.1 1.021 

PG3 0 140 40 V51 0.95 1.1 1.051 

PG6 0 100 0 V52 0.95 1.1 0.968 

PG8 0 550 450 V53 0.95 1.1 0.955 

PG9 0 100 0 V54 0.95 1.1 0.987 

PG12 0 410 310 V55 0.95 1.1 1.028 

Dependent variables V56 0.95 1.1 0.964 

Voltage at load 

buses (pu) 

V4 0.95 1.1 0.978 V57 0.95 1.1 0.960 

V5 0.95 1.1 0.976 𝑃𝑠𝑙𝑎𝑐𝑘 (MW) PG1 0 575.9 479.262 

V7 0.95 1.1 0.982 Reactive power 

generation at gen-

erator buses 

(MVAR) 

QG1 -140 200 129.833 

V10 0.95 1.1 0.986 QG2 -17 50 -0.751 

V11 0.95 1.1 0.973 QG3 -10 60 7.369 

V13 0.95 1.1 0.978 QG6 -8 25 6.010 

V14 0.95 1.1 0.969 QG8 -140 200 65.386 

V15 0.95 1.1 0.987 QG9 -3 9 6.862 

V16 0.95 1.1 1.013 QG12 -150 155 130.745 

V17 0.95 1.1 1.017  

V18 0.95 1.1 0.975 Quantities to optimize 

V19 0.95 1.1 0.951 𝑃𝑙𝑜𝑠𝑠 (MW) 28.462 

V20 0.95 1.1 0.950 𝑉𝐷 (pu) 1.554 

V21 0.95 1.1 1.000 𝐹 ($/h) 16895.095 

V22 0.95 1.1 1.003 Emission (ton/h) 2.416 
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B. IEEE 57-bus System 

The load flow results for the IEEE 57-bus system at the basic state are presented in Table 10. Similar 

to the IEEE 30-bus system, several violations of dependent variable limits are observed, particularly in 

the voltage at load buses. The optimized values for the IEEE 57-bus system across all cases are shown 

in Tables 11 and 12. All algorithms successfully bring the dependent variables within permissible limits.  

To evaluate the performance of the proposed OPS algorithm in terms of objective function value 

minimization, each case is analyzed. OPS ranks third among the four algorithms, but the differences in 

objective function values between OPS, PSO (the best), and GA (the second-best) are not significant. In 

Case 2, OPS improves to the second-best position, although it remains significantly different from the 

best-performing algorithm. Case 3 mirrors Case 1, where OPS ranks third with small differences be-

tween the best and second-best algorithms. Meanwhile, in Case 4, OPS surpasses IPM and GA, ranking 

second only to PSO. 

The computation time performance for all algorithms is depicted in Figure 5. Apart from Case 2, the 

proposed OPS is the fastest among the three metaheuristic algorithms used in this study, although it 

remains slower than IPM. This slower speed is compensated by significantly better performance in ob-

jective function value minimization. 

Figure 6 shows the performance charts for the algorithms on the IEEE 57-bus system. Compared to 

the charts for the IEEE 30-bus system, these charts exhibit a more uniform pattern across all cases, 

except for Case 2. The "balancing" advantage of OPS is evident in Cases 1, 3, and 4. In Case 2, while 

OPS is both slower and less accurate than PSO, the gaps in these parameters are not substantial. 

C. IEEE 118-bus System 

The results of the load flow computation for the IEEE 118-bus system at the basic state are presented 

in Table 13. A unique observation from the basic state simulation is the minimal number of violations 

TABLE 11 

OPTIMAL VALUES OF CONTROL VARIABLES FOR IEEE 57-BUS SYSTEM AT CASE 1 AND CASE 2 

Variable 
Case 1 Case 2 

IPM PSO GA OPS IPM PSO GA OPS 

V1 1.055 1.010 1.039 1.047 1.053 1.100 1.013 1.079 

V2 1.026 1.004 1.031 1.037 1.028 1.098 0.995 1.064 

V3 1.013 1.010 1.032 1.030 1.015 1.090 0.992 1.019 

V6 1.001 1.010 1.027 1.017 1.001 1.083 1.027 1.000 

V8 1.003 1.014 1.022 1.004 1.005 1.096 1.057 0.999 

V9 0.981 0.991 1.004 0.989 0.985 1.074 1.001 0.985 

V12 1.013 0.997 1.016 1.009 1.018 1.090 0.993 1.010 

QC18 4.999 5.000 5.000 5.000 0.014 5.000 4.997 5.000 

QC25 4.994 5.000 5.000 5.000 4.468 5.000 4.998 5.000 

QC53 2.148 5.000 5.000 5.000 4.182 4.999 4.999 5.000 

T4-18 1.004 0.902 0.905 0.902 1.012 1.010 0.906 0.901 

T4-18 1.023 0.902 0.933 0.929 0.970 0.946 0.903 0.907 

T21-20 1.019 0.995 1.007 0.968 0.979 1.002 1.001 0.996 

T24-25 0.956 0.949 0.946 0.901 0.973 0.919 0.918 0.910 

T24-25 0.957 0.912 0.939 0.900 0.925 0.942 0.915 0.909 

T24-26 1.039 0.992 1.031 1.016 1.062 0.970 1.028 0.968 

T7-29 0.952 0.902 0.938 0.952 0.930 0.973 1.069 0.914 

T34-32 0.968 0.919 0.929 0.900 0.928 0.920 0.906 0.912 

T11-41 0.935 0.900 0.901 0.900 0.940 0.901 0.913 0.900 

T15-45 0.956 0.900 0.914 0.944 0.971 0.973 0.900 0.908 

T14-46 0.958 0.900 0.908 0.954 0.965 0.966 0.909 0.907 

T10-51 0.900 0.906 0.910 0.933 0.900 0.990 0.954 0.920 

T13-49 0.949 0.900 0.902 0.902 0.961 0.943 0.909 0.912 

T11-43 0.937 0.900 0.900 0.900 0.951 0.965 0.913 0.900 

T40-56 1.022 1.017 1.015 0.990 1.048 0.985 1.022 1.014 

T39-57 0.994 0.985 0.985 0.959 0.966 0.943 0.982 0.979 

T9-55 0.909 0.900 0.932 0.936 0.901 0.971 0.917 0.900 

PG2 18.393 0.037 0.001 0.000 8.346 100.000 99.994 100.000 

PG3 0.004 139.998 140.000 140.000 0.000 87.267 77.122 75.549 

PG6 1.817 99.989 100.000 100.000 0.000 100.000 99.999 100.000 

PG8 436.161 308.240 302.597 295.743 412.491 55.353 101.441 52.494 

PG9 9.846 100.000 100.000 100.000 0.006 100.000 100.000 100.000 

PG12 253.527 410.000 410.000 410.000 326.141 275.752 249.041 292.599 

𝑃𝑙𝑜𝑠𝑠 (MW) 35.427 10.516 10.321 11.095 30.848 43.436 52.410 45.722 

𝐹 ($/h) 16083.19 11059.17 10857.48 10621.70 15150.99 5582.20 5802.47 5611.93 

Emission (ton/h) 2.821 1.172 1.170 1.172 2.659 2.256 2.223 2.280 

𝑉𝐷 (pu) 1.128 2.207 2.348 1.446 1.089 3.375 1.415 2.087 
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of dependent variable limits. Out of 119 dependent variables, only six violate their limits, all of which 

pertain to reactive power generation at generator buses.  

Table 14 shows the objective function values achieved by all algorithms for the IEEE 118-bus system 

across all cases. Notably, GA fails to ensure that all dependent variables remain within permissible limits 

during the simulation for this system. In fact, it introduces more violations than observed in the basic 

TABLE 12 

OPTIMAL VALUES OF CONTROL VARIABLES FOR IEEE 57-BUS SYSTEM AT CASE 3 AND CASE 4 

Variable 
Case 1 Case 2 

IPM PSO GA OPS IPM PSO GA OPS 

V1 1.040 1.031 1.026 1.033 1.039 1.035 1.012 1.039 

V2 1.025 1.030 1.025 1.026 1.011 1.026 0.996 1.010 

V3 1.003 1.025 1.023 1.003 1.004 1.021 1.003 1.004 

V6 0.996 1.010 1.020 1.000 1.003 1.000 1.027 1.005 

V8 1.012 1.011 1.028 1.005 1.013 1.025 1.062 1.017 

V9 0.990 0.992 1.005 0.990 0.995 1.005 1.024 0.996 

V12 1.027 1.002 1.011 1.011 1.037 1.018 1.041 1.036 

QC18 2.876 4.976 4.996 5.000 4.625 4.873 0.083 5.000 

QC25 4.606 5.000 4.998 5.000 4.394 5.000 5.000 4.791 

QC53 4.991 5.000 5.000 5.000 2.884 5.000 5.000 5.000 

T4-18 0.971 0.911 0.906 0.900 0.976 0.927 0.935 0.948 

T4-18 0.980 0.911 0.931 0.900 0.978 1.066 0.980 0.947 

T21-20 1.042 1.011 1.002 0.981 1.047 0.968 0.991 1.016 

T24-25 0.964 0.932 0.910 0.901 0.967 0.900 0.928 0.975 

T24-25 0.964 0.952 0.933 0.902 0.967 1.054 0.932 0.967 

T24-26 1.044 1.006 1.024 1.028 1.047 1.036 1.008 1.039 

T7-29 0.961 0.900 0.956 0.961 0.953 0.955 1.005 0.952 

T34-32 0.964 0.931 0.920 0.902 0.975 0.916 0.946 0.918 

T11-41 0.942 0.900 0.910 0.903 0.941 0.900 0.905 0.900 

T15-45 0.952 0.903 0.913 0.921 0.946 0.900 0.910 0.929 

T14-46 0.969 0.900 0.916 0.922 0.964 0.993 0.973 0.964 

T10-51 0.900 0.900 0.934 0.947 0.936 1.000 1.021 0.965 

T13-49 0.957 0.900 0.904 0.910 0.962 0.900 0.937 0.962 

T11-43 0.943 0.900 0.909 0.900 0.947 0.965 0.918 0.932 

T40-56 1.035 1.019 1.012 0.998 1.075 0.990 1.077 1.020 

T39-57 0.947 0.987 0.981 0.962 0.945 0.906 0.986 0.937 

T9-55 0.910 0.900 0.970 0.957 0.932 0.972 0.985 0.963 

PG2 0.000 100.000 100.000 100.000 2.023 16.799 12.554 0.000 

PG3 0.076 140.000 140.000 140.000 28.803 121.186 0.030 0.000 

PG6 26.255 100.000 100.000 100.000 1.777 9.796 0.036 8.877 

PG8 465.914 274.211 274.682 274.362 464.806 307.832 346.245 402.033 

PG9 0.000 100.000 100.000 100.000 0.740 100.000 48.139 2.424 

PG12 299.460 356.623 356.566 357.128 310.972 161.582 317.166 305.207 

𝑃𝑙𝑜𝑠𝑠 (MW) 28.168 13.505 13.759 14.412 27.620 40.144 35.009 33.130 

𝐹 ($/h) 17674.48 9588.22 9603.74 9599.04 17664.92 10510.20 12169.33 14624.66 

Emission (ton/h) 2.506 0.955 0.956 0.957 2.416 2.406 2.605 2.789 

𝑉𝐷 (pu) 1.119 2.435 1.687 1.364 1.015 0.662 0.797 0.750 

 

 
Figure 20. Computation Time for Simulation on IEEE 57-Bus System 
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state condition. This failure provides sufficient grounds to exclude GA from further consideration for 

the IEEE 118-bus system. Nevertheless, the results for GA are still presented to report its achieved 

objective function values and computation times.  

In Case 1, the proposed OPS algorithm performs well, achieving the second-lowest power loss, with 

PSO outperforming it. In Case 2, the proposed OPS algorithm delivers the best performance, achieving 

the smallest fuel cost. It surpasses IPM and PSO, which rank second and third, respectively. A similar 

outcome is observed in Case 3, where OPS produces the best emission results, performing on par with 

PSO. However, in Case 4, OPS ranks third, trailing PSO and GA. As previously mentioned, GA’s ina-

bility to resolve dependent variable limit violations diminishes its reliability, leaving OPS as the second-

best option after PSO. 

IPM remains the fastest algorithm, consistent with its performance in the IEEE 30-bus and IEEE 57-

bus systems. Additionally, the proposed OPS algorithm outperforms the other two metaheuristic algo-

rithms (PSO and GA) in Cases 1, 2, and 4. In Case 3, OPS ranks as the second-best algorithm, following 

PSO. The curves in Figure 7 further confirm GA's disadvantages when applied to the IEEE 118-bus 

system. 

TABLE 13 

OBJECTIVE FUNCTION VALUES FOR IEEE 118-BUS SYSTEM AT BASIC STATE 

Quantity 𝑃𝑙𝑜𝑠𝑠 (MW) 𝐹 ($/h) Emission (ton/h) 𝑉𝐷 (pu) 

Value 133.357 131240.378 0.200 1.489 

 

TABLE 14 

OBJECTIVE FUNCTION VALUES FOR IEEE 118-BUS SYSTEM AT OPTIMIZED STATES 

Quantities Algorithm Case 1 Case 2 Case 3 Case 4 

𝑃𝑙𝑜𝑠𝑠 (MW) IPM 98.430 81.722 100.078 98.578 

PSO 12.783 93.200 242.812 127.334 

GA 156.896 156.883 146.554 193.288 

OPS 34.850 81.092 130.060 148.611 

𝐹 ($/h) IPM 133528.157 132677.064 133519.129 133544.534 

PSO 166739.089 142321.631 201262.088 157638.202 

GA 156413.329 156767.475 160545.984 167682.212 

OPS 157086.138 132651.660 172317.454 147401.284 

Emission 

(ton/h) 

IPM 0.178 0.186 0.176 0.176 

PSO 0.180 0.179 0.043 0.204 

GA 0.134 0.175 0.186 0.180 

OPS 0.173 0.186 0.043 0.208 

𝑉𝐷 (pu) IPM 3.248 3.714 2.675 3.138 

PSO 1.393 2.094 1.752 0.570 

GA 1.354 1.950 2.291 2.526 

OPS 3.353 3.847 2.959 2.631 

 

 
Figure 21. Performance Charts of OPF on IEEE 57-Bus System 
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The algorithm performance charts are illustrated in Figure 8. In Cases 1 and 4, the charts validate the 

proposed OPS algorithm's role as a balancer between speed and accuracy, consistently positioning it 

between IPM and PSO. In Case 2, OPS also ranks between IPM and PSO; however, IPM emerges as 

the best algorithm in this case. Interestingly, no algorithms successfully minimize the fuel cost in Case 

2, as the "optimized" objective function values exceed the basic state values. Consequently, the three 

algorithms—IPM, PSO, and OPS—only accomplish one of the two objectives: forcing the dependent 

variables within permissible limits.  

In Case 3, the proposed OPS algorithm lags behind PSO in both objective function value and compu-

tation time, ranking as the third-best algorithm. GA consistently performs the worst across all cases due 

to its slow computation and inability to meet the required performance criteria effectively. 

IV. CONCLUSION 

This study examined the solution of Optimal Power Flow (OPF) problems using the proposed OPS 

algorithm alongside three other algorithms on three different test systems. Each algorithm was applied 

to optimize four distinct objective functions for each system. The analysis revealed key insights into the 

 
Figure 22. Computation Time for Simulation on IEEE 118-Bus System 

 
Figure 23. Performance Charts of OPF on IEEE 118-Bus System 
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performance of the OPS algorithm across various scenarios. The proposed OPS algorithm demonstrated 

a balance between accuracy and speed when minimizing power loss and bus voltage deviation. It was 

slower but more accurate than the Interior Point Method (IPM) and faster but slightly less accurate than 

Particle Swarm Optimization (PSO). This highlights its potential to effectively manage trade-offs be-

tween computation speed and optimization accuracy. 

In cases where fuel cost was the objective function, the OPS algorithm's performance varied across 

the test systems. For the IEEE 30-bus system, OPS was the slowest algorithm and did not achieve a 

superior fuel cost value. For the IEEE 57-bus system, while slower than IPM, OPS obtained a better fuel 

cost value but was slightly less effective than PSO in terms of both computation time and cost optimi-

zation. For the IEEE 118-bus system, none of the algorithms minimized the fuel cost successfully, but 

all maintained dependent variables within permissible limits. In this scenario, OPS ranked between IPM 

and PSO in terms of both computation time and fuel cost value. When emission minimization was the 

objective, the OPS algorithm's performance again showed variability. For the IEEE 30-bus system, OPS 

was the slowest algorithm and did not achieve a superior emission value. In the IEEE 57-bus system, 

OPS effectively balanced the speed advantage of IPM and the accuracy of PSO. However, in the IEEE 

118-bus system, OPS lagged behind PSO in both objective function value and computation time. 

The study also evaluated the computation time of the OPS algorithm across different systems. For the 

IEEE 30-bus system, OPS was faster than the Genetic Algorithm (GA) in two cases but slower in the 

other two. For the IEEE 57-bus and IEEE 118-bus systems, OPS outperformed GA consistently. This 

suggests that OPS is better suited for medium and large systems due to its reliance on directional search 

strategies requiring fewer steps compared to GA's large search space and multiple generations. The use 

of IPM to generate the initial population for OPS did not significantly increase its computation time. 

When compared to IPM, the OPS algorithm was slower, which aligns with expectations, as IPM is 

among the fastest optimization algorithms for OPF problems. However, IPM's objective function mini-

mization performance was generally weaker, making it more suitable for generating the initial popula-

tion for OPS. In comparison with PSO, the performance varied depending on the test system and case. 

In some scenarios, OPS was faster than PSO, while in others, PSO outperformed OPS. This indicates 

that the OPS algorithm is comparable to PSO in terms of performance across the analyzed test systems, 

offering a promising alternative for solving OPF problems in various contexts. 

This study does not address the integration of renewable energy technologies into the grid or the 

associated challenges, such as uncertainties and power quality. For future research, renewable energy 

technologies such as wind turbines and solar photovoltaics could be incorporated into the grid. Such 

studies could also model the uncertainties arising from the output power of these renewable sources, 

necessitating stochastic optimization approaches. Furthermore, renewable energy technologies, often 

installed alongside power electronics components, may impact power quality. Therefore, power quality 

issues could form another important area of investigation in future studies.  
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