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ABSTRACT 

Plant diseases, particularly in staple crops like rice, significantly affect the stability of rice production in Indo-

nesia. Crop failure caused by rice plant diseases present a critical challenge for farmers.  Early diagnosis is 

crucial for preventing and managing rice diseases, as it facilitates more effective preventive measures, reduces 

yield losses, and boosts overall agricultural production. This study aims to apply the Faster Region Convolutional 

Neural Network (Faster R-CNN), a deep learning approach, to detect rice plant diseases. The Grid Search method 

was employed as a hyperparameter tuning technique to identify the optimal parameter combination for enhancing 

algorithm performance. Experimental results demonstrate the model's performance, achieving an accuracy rate 

of 88%, recall and precision of 100%, and an F1 Score of 93%. These findings indicate that the Faster R-CNN 

method effectively recognizes and classifies rice plant diseases with a high degree of accuracy. 
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I. INTRODUCTION 

ICE plays a pivotal role as a staple crop in Indonesia, serving as the primary source of 

carbohydrates and fulfilling the dietary needs of the population[1]. According to the Statistics 

Indonesia (Badan Pusat Statistik/BPS), rice production in 2022 increased by 0.59%, reaching 

31.54 million tons, an improvement of 184.50 thousand tons compared to the 31.36 million tons 

produced in 2021 [2]. However, the rice farming sector in Indonesia continues to face challenges, 

particularly crop failures caused by rice plant diseases. Common diseases affecting rice plants include 

blast disease caused by fungi, bacterial leaf blight caused by bacteria, and tungro caused by viruses, 

among others [3]–[5]. Symptoms of diseased rice plants can be observed through changes in leaf color, 

the appearance of spots on leaves, leaf drying, and other visible indicators [6]. Each disease requires 

prompt treatment; delays or errors in managing rice plant diseases can reduce both the quality and 

quantity of rice harvests [7]. 

A lack of knowledge about rice plant diseases greatly affects decision-making in agricultural man-

agement [8]. Advances in artificial intelligence (AI), particularly deep learning—a subset of machine 

learning that employs neural networks with multiple layers for complex data processing—offer promis-

ing solutions. Deep learning has been applied successfully in various fields, including disease diagnosis 

[9]. By analyzing patterns or unique characteristics in images of diseased rice plants, it is possible to 

identify these diseases [10]. Consequently, the application of Artificial Intelligence for diagnosing and 

classifying rice plant diseases is becoming increasingly significant, aiming to simplify and improve the 

diagnostic process for such agricultural challenges. 

Prior studies have investigated the application of deep learning and machine learning for identifying 

diseases in rice plants. Several studies have explored the use of deep learning, including the Convolu-

tional Neural Network (CNN) technique. These studies employed specific parameter settings, such as a 
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batch size of 32, 100 epochs, the Adam optimizer, and a learning rate of 0.0001, resulting in a test 

accuracy of 62.21% [11]. Another study utilized the Faster R-CNN method with parameters including 

a batch size of 60, the SGD optimizer, a learning rate of 0.01, and a weight decay of 0.0001, achieving 

a test accuracy rate of 85.4% [12]. Similarly, machine learning approaches, such as the learning vector 

quantization method, with parameters of alpha 0.02, error tolerance 0.001, alpha reduction 0.5, and 5 

epochs, produced an accuracy rate of 75% and an error rate of 25% [13]. Based on these findings, it can 

be concluded that research on rice plant disease detection using the Faster R-CNN method combined 

with hyperparameter tuning via Grid Search is still limited. 

This research aims to advance rice plant disease detection by applying deep learning, specifically the 

Faster R-CNN method, to develop a disease detection application. The method is chosen based on prior 

research utilizing the Pascal 2007 dataset, which applied hyperparameters such as 13 epochs, a batch 

size of 64, momentum of 0.9, and a decay rate of 0.005. The results achieved a Mean Average Precision 

(MAP) of 70.4, outperforming R-CNN, Fast R-CNN, and YOLO methods [14]. In this study, the Faster 

R-CNN method is combined with the Grid Search technique for hyperparameter tuning to enhance the 

accuracy and precision in identifying specific rice plant diseases. 

This study contributes to the field of computer vision, particularly in detection and classification, by 

improving algorithm model performance. This is reflected in metrics such as accuracy, precision, recall, 

and F1 score. Furthermore, this research is expected to significantly aid the development of rice plant 

disease detection, providing practical benefits to farmers by enabling the early identification of diseases 

in rice plants. 

II. RESEARCH METHOD 

This section discusses key aspects of the research, including the rice plant disease dataset, the data 

preprocessing workflow, an explanation of the Faster R-CNN method for building rice plant disease 

detection models, the use of Grid Search for hyperparameter tuning, and model evaluation through a 

confusion matrix. The research process is depicted in the flowchart in Figure 1. The research flow in 

 
Figure 1. Research Flow 
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Figure 1 comprises several stages: data input, data preprocessing, data splitting, hyperparameter tuning, 

Faster R-CNN model construction, and model evaluation. Each stage is detailed as follows: 

A. Dataset 

This study utilizes a public dataset containing 80 images per class of rice plant diseases [15]. Addi-

tionally, data were collected from agricultural areas in Trowulan District, Mojokerto Regency, East Java, 

providing 50 images of diseased rice plants for each category. Each class includes 130 images repre-

senting three disease categories: Blast (Figure 2), Blight (Figure 3), and Tungro (Figure 4). In total, the 

dataset comprises 390 images of rice plant diseases. 

B. Preprocessing 

The preprocessing stage customizes the data to meet the research requirements [16]. During this 

phase, the image extensions are adjusted, and annotations are applied to each image. The annotation 

process identifies the disease's location and labels each bounding box. The bounding box data are orga-

nized in a table with eight columns: file name, width, height, class, x-min, y-min, x-max, and y-max. 

The "class" column specifies the bounding box category, while the x-min, y-min, x-max, and y-max 

columns denote the bounding box's precise position within the image. Figure 5 illustrates the distribution 

of image annotations. The dataset is divided into training and testing sets, with 80% allocated for training 

and 20% for testing. Figure 6 provides a visual representation of the data preprocessing workflow.  

C. Faster R-CNN 

Faster R-CNN is an image object detection algorithm developed by Microsoft Research, with the 

Region Proposal Network (RPN) as its core component. The RPN generates proposals or identifies re-

gions likely to contain objects [17]. In this research, Faster R-CNN is applied by first extracting features 

 
Figure 2. Sample image of blast disease 

 

 
Figure 3. Sample image of blight disease 

 

 
Figure 4. Sample image of tungro disease 
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from rice plant images through a convolutional layer to create a feature map. This feature map is then 

passed to the RPN stage, which produces proposals indicating the locations in the image suspected of 

exhibiting characteristics of rice plant diseases. These proposals proceed to the ROI pooling stage for 

adjustment, ensuring compatibility with the classifier stage for rice plant disease detection.  

In this method, a loss function is utilized to calculate the RPN loss and the classifier loss, helping 

assess the model's optimal performance during training [17]. The loss function is defined in (1)  

L({p
i
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In (1), 𝑁𝑐𝑙𝑠 represents the number of elements in the mini-batch used for the classification loss calcu-

lation, while 𝑁𝑟𝑒𝑔 denotes the number of elements contributing to the regression loss. The variable 𝑝𝑖 

corresponds to the predicted probability, and 𝑝𝑖
∗ is the ground truth classification label. Meanwhile, 𝑡𝑖 

represents the model's regression prediction, and 𝑡𝑖
∗ refers to the ground truth regression values. The 

parameter λ acts as a weight that regulates the contribution of the regression loss to the total loss. This 

formulation ensures a balance between classification and regression tasks, enhancing the model’s overall 

performance. 

D. Grid Search 

A hyperparameter tuning method that tests all combinations of candidate parameters to achieve the 

highest classification accuracy [18]. In this study, the loss function was used as the primary criterion for 

determining the best model after tuning.  

Table 1 summarizes the parameters used in the grid search process for hyperparameter tuning. These 

parameters include two optimizers (Adam and SGD), three momentum values (0.3, 0.6, and 0.9), and 

three weight decay values (0.01, 0.001, and 0.0001). Each parameter combination was tested to identify 

the configuration resulting in the lowest total loss, corresponding to the model's optimal performance. 

TABLE 1 

GRID SEARCH PARAMETERS 

Parameters Value 

Optimizer Adam and SGD 
Momentum 0.3, 0.6, and 0.9 

Weight decay 0.01, 0.001, and 0.0001 

 

 
Figure 5. Class distribution frequency 

 

 
Figure 6. Data Preprocessing Workflow 
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E. Model Evaluation 

This study employs a confusion matrix to evaluate the model's performance. The confusion matrix is 

a tool for assessing a model's effectiveness in predicting the categories or classifications of data. It does 

so by counting the number of correct and incorrect predictions made on test data [19]. Metrics derived 

from the confusion matrix include precision, recall, accuracy, and the F1 score. The following sections 

explain these metrics and their interpretations. 

Accuracy measures the model's ability to correctly classify both predicted and true classes [20]. The 

formula for accuracy is presented in (2), where TP represents true positives (correct predictions for the 

positive class), TN represents true negatives (correct predictions for the negative class), FP represents 

false positives (incorrect predictions for the positive class), and FN represents false negatives (incorrect 

predictions for the negative class). Precision indicates the model's ability to correctly classify instances 

of the predicted positive class [20]. The precision calculation uses (3). It is calculated using (3), where 

TP denotes true positives and FP denotes false positives. Recall measures the model's ability to correctly 

classify instances of the actual positive class [20]. It is calculated using (4), where TP refers to true 

positives and FN refers to false negatives. The F1 Score evaluates the balance between precision and 

recall. A higher F1 Score signifies better performance in predicting a specific class [20]. The F1 Score 

is calculated using (5), where recall is obtained from (4) and precision from (3). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (5) 

III. RESULT AND DISCUSSION 

A. Training and Tuning 

After completing the data preprocessing stage, the training process was conducted using various hy-

perparameter combinations obtained through the grid search procedure. Each tuning configuration in-

cluded optimizer, momentum, and weight decay parameters. The best model was determined based on 

the combination of Region Proposal Network (RPN) loss and classifier loss values that yielded the 

smallest total loss. It is worth noting that the Adam optimizer does not include a momentum parameter, 

so tuning for this optimizer was performed only on the weight decay parameter. 

Table 2 presents the training results for each hyperparameter combination, providing an overview of 

the impact of different configurations on the total loss. The Adam optimizer with weight decay of 0.0001  

achieved the smallest total loss of 1.368, ranking first. Conversely, the Stochastic Gradient Descent 

(SGD) configuration with a momentum of 0.9 and weight decay of 0.01 produced the largest total loss 

TABLE 2 
HYPERPARAMETER TUNING RESULTS 

Optimizer Momentum Weight Decay Total Loss Rank 

ADAM - 0.0001 1.368 1 

SGD 0.9 0.0001 1.374 2 

SGD 0.3 0.0001 1.595 3 
ADAM - 0.001 1.671 4 

SGD 0.6 0.0001 1.685 5 

SGD 0.6 0.001 2.27 6 
SGD 0.3 0.001 2.567 7 

ADAM - 0.01 2.663 8 

SGD 0.3 0.01 2.746 9 
SGD 0.6 0.01 2.892 10 

SGD 0.9 0.001 3.51 11 

SGD 0.9 0.01 4.082 12 
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of 4.082, ranking last. Based on these results, the detection model was configured with the following 

parameters: a learning rate of 0.0001, Adam optimizer, weight decay of 0.0001, 100 epochs, and an 

epoch length of 1000. 

The results of the loss function for the Adam optimizer with a weight decay of 0.0001 are detailed in 

Figure 7, showing the loss function's progression over 100 epochs. demonstrates the decrease in loss 

values over time, reflecting the training process's effectiveness. 

B. Model Evaluation 

At this stage, the model, after undergoing tuning and training, was evaluated to assess its performance 

in classifying disease types in images that were not part of the training dataset. The evaluation employed 

a confusion matrix. As shown in Figure 8, the confusion matrix indicates that the number of correctly 

predicted instances for the blast class is 17, while 9 instances were misclassified. For the leaf blight and 

tungro classes, the predictions matched the actual values perfectly, with 26 instances correctly classified 

for each class. 

Using the confusion matrix depicted in Figure 8, metrics such as accuracy, precision, recall, and F1 

score were calculated. For the blast category, the precision, recall, and F1 score were 1.00, 0.65, and 

0.79, respectively. In comparison, the blight category achieved precision, recall, and F1 score values of 

0.84, 1.00, and 0.91. Similarly, the tungro category recorded precision, recall, and F1 score values of 

0.87, 1.00, and 0.93. Table 3 provides a detailed breakdown of these metrics. 

TABLE 3 

CALCULATION RESULTS OF ACCURACY, PRECISION, RECALL, AND F1 SCORE 

Class Precision Recall F1 Score Accuracy 

Blast 1 0.65 0.79 

0.88 Blight 0.84 1 0.91 

Tungro 0.87 1 0.93 

 

 

 
Figure 7. Loss Training 

 

 

 
Figure 8. Confusion Matrix 
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C. Discussion 

The Grid Search method was effective in optimizing the model for disease classification, with the 

Adam optimizer and a weight decay of 0.0001 producing the best results, as evidenced by the lowest 

total loss of 1.368.  

The evaluation using the confusion matrix highlights the model's strengths, achieving an overall ac-

curacy of 0.88 and balanced performance across different classes. Specifically, the model demonstrated 

high precision for the blast class (1.00) but a lower recall of 0.65, indicating that while the model cor-

rectly identified blast cases, it missed some instances. This limitation may stem from an excessive num-

ber of annotations, causing the model to overemphasize specific patterns within the blast class and strug-

gle to generalize effectively. As a result, the model exhibited signs of overfitting.  

In contrast, the blight and tungro classes achieved perfect recall scores of 1.00, indicating no missed 

instances, with precision scores of 0.84 and 0.87, respectively. These results yielded high F1 scores of 

0.91 and 0.93, demonstrating the model's effectiveness in distinguishing between disease classes. This 

performance is particularly notable for its accuracy in identifying blight and tungro instances. 

IV. CONCLUSION 

The experimental results demonstrate that the developed model is effective in identifying and catego-

rizing diseases in rice plant images. The model configuration includes hyperparameters determined 

through a grid search process, featuring a learning rate of 0.0001, the Adam optimizer, a weight decay 

value of 0.0001, 100 total epochs, and an epoch length of 1000. Performance evaluation using a confu-

sion matrix revealed an accuracy of 88%. The highest precision was achieved in the Blast class (100%), 

while the highest recall was observed in the Blight and Tungro classes (100% each). Additionally, the 

Tungro class recorded the highest F1 score (93%), showcasing the model's robust capability to address 

the challenge of disease identification and categorization in rice plants. 

Future research could focus on three main areas. First, improving the model's performance by expand-

ing the dataset through the collection of more images depicting rice plant diseases. A larger dataset is 

expected to enhance the model's generalization and overall accuracy. Second, optimizing the model 

further by exploring a wider range of values and parameters during hyperparameter tuning. Advanced 

techniques, such as Bayesian optimization, could be employed to identify the most effective combina-

tion of hyperparameters. Lastly, expanding the range of diseases the model can identify and categorize 

would equip it with broader functionality, enabling it to address a wider array of rice plant disease de-

tection tasks. 
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