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ABSTRACT 

Power transformers are critical to electrical power systems but are prone to failures due to factors such as heat, 

electricity, chemical reactions, mechanical stress, and adverse environmental conditions. Monitoring the insulat-

ing oil effectively is key to preventing these failures. A major challenge in this process is determining the optimal 

weights for the oil quality index, which lacks a standardized benchmark and often relies on subjective expert 

assessments. To reduce expert bias and subjectivity, this research utilizes a genetic algorithm to optimize the 

weightings for five essential parameters: color, water content, breakdown voltage (BDV), interfacial tension (IFT), 

and acidity. The algorithm operates through three stages: crossover, mutation, and selection, and analyzes data 

from 504 oil tests across various transformers. The mean absolute percentage error (MAPE) is used as the fitness 

value to assess the algorithm's effectiveness. The optimization process determined the best conditions as 132 iter-

ations, a population size of 180, a crossover rate of 0.2, and a mutation rate of 0.8. These parameters achieved an 

average MAPE of 1.799% over ten trials, indicating high accuracy. This research not only optimizes the weighting 

of the oil quality index but also significantly reduces the need for expert input and subjective judgments in trans-

former maintenance. The findings are expected to improve the efficiency and reliability of power transformers, 

thereby minimizing failures and associated economic costs. 

  

Keywords: : electricity, insulating oil, optimization, power system. 

 

I. INTRODUCTION 

RANSFORMERS are essential components of electrical power equipment. Transformer lifespans 

typically exceed 40 years. On the other hand, an unfavorable combination of heat, electricity, 

chemistry, mechanics, and the environment can occasionally cause power transformer failure to 

occur more quickly. A number of factors, including faults, oil quality, and paper condition, can lead to 

transformer insulation failure. These factors may shorten the transformer's service life, which could 

result in malfunctions and explosions while the transformer is in use [1], [2]. Thus, a transformer 

assessment is necessary to prevent unexpected transformer failure [3]. 

Oil is needed in various technologies due to recent technological advancements, particularly in power 

transformers. Power transformers use oil as a heat-transfer medium and for insulation. In order to lower 

the chance of a power transformer failure, oil insulation needs to be monitored [4], [5]. A suitable 

designed weighting mechanism is essential to obtaining a high oil quality index and preventing power 

transformer failure. The color, dissipation factor, kinematic viscosity (cSt), acidity, dielectric strength 

(kV), and water content (ppm) are the six factors that determine the oil quality index. Inadequate oil 

quality can lead to the release of dissolved gases, which can impact the transformer's chemical 

composition and electrical and thermal conditions [6]. 

No suitable benchmark value can be used as a reference to obtain the correct results or parameter 

weighting values. Expert judgment determines how each weighting factor should be applied. Because 

no standards have been established or followed, weighting is therefore extremely difficult to perform 

and is instead based on the expert's subjective judgments or weights taken from earlier research [7]. A 

weighting mechanism using artificial intelligence needs to be implemented to overcome this problem. 

Entropy Weight Health Index (EWHI) method is one of the weighting techniques that past researchers 
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have employed. In order to determine the entropy weight, the parameter entropy was used in conjunction 

with the entropy weighting method, which was based on a jury matrix generated from the index values 

in every case. The entropy weight increases with the parameter's importance to the evaluation. The 

entropy weight method can increase the realism of evaluation results by minimizing the subjectivity of 

parameter weighting [8]. It is claimed that the primary benefit of the entropy weight method over other 

subjective weighting models is its ability to prevent human factors from influencing indicator weight, 

which improves the comprehensive evaluation results' objectivity [9]. In other research, entropy weights 

were combined with the VIKOR method to obtain alternative rankings after the entropy weight method 

was applied by the decision maker [10]. However, this method of determining weights still involves 

subjective evaluations. 

Weight parameters can also be determined by applying decision support system techniques, such as 

the Analytical Hierarchy Process (AHP), which is used extensively. Two AHP models were tested to 

weight parameters in earlier research by comparing the questionnaire's individual and group form 

models [11]. A hierarchy is created based on the number of parameters that determine the transformer 

health index in order to apply AHP to weight parameters. Experts then perform an evaluation and 

prioritize each parameter [12]. However, the requirement for extensive information from experts is a 

drawback of the analytical hierarchy process [13]. There was high involvement of experts in previous 

studies to determine parameter weights. 

The identified research gap lies in the reliance on the subjective judgment of experts and the lack of 

a completely objective method for determining the weighting factors of transformer oil quality. The 

approach used in previous studies still shows subjectivity, which can be time-consuming and may 

require extensive input from experts. To overcome this gap, this research proposes a more objective 

approach by utilizing a genetic algorithm to determine the weighting factors for transformer oil quality. 

The genetic algorithm is chosen due to its ability to handle discrete and continuous variables effectively, 

provide multiple optimal solutions, and increase the accuracy of classification results [14]. It can also 

work effectively with various types of optimizations, including analytical functions and numerical data 

[15][16]. With these advantages, a genetic algorithm is proposed in this research to determine the 

weights of a number of parameters, consisting of color, water content, breakdown voltage (BDV), 

interfacial tension (IFT), acidity, and water. This research aims to develop a genetic algorithm-based 

weighting method to determine the optimal weighting factors for transformer oil quality parameters. 

Additionally, the effectiveness of this method in enhancing the accuracy of transformer health index 

classification will be assessed. Meanwhile, this research novelty is that there is no involvement of 

experts in determining the oil quality weight factors. 

II. RESEARCH METHOD 

The tools and materials used in this research include the Python programming language, the Visual 

Studio Code (VS Code) editor, a laptop based on an Intel Core i7 processor, and Python libraries such 

as NumPy, Pandas, and SciPy. This study employs 504 data, each containing parameter values for color, 

water, BDV, IFT, acidity, and water content, from 150 kV transformers [17]. The sample data used is 

shown in Table 1. 

TABLE 1 

DATA SAMPLES 

Color Water BDV IFT Acidity OQF Rating 

0.50 7.59 62.10 36.10 0.04 1.00 A 

0.60 6.14 76.80 31.60 0.09 1.19 A 

1.60 11.57 66.40 28.40 0.17 1.79 C 
0.50 8.16 59.20 31.50 0.09 1.19 A 

1.60 7.56 64.50 31.80 0.02 1.36 B 

1.70 7.73 53.50 31.50 0.01 1.36 B 
0.80 12.01 42.50 32.80 0.04 1.71 C 

2.20 4.74 99.20 28.10 0.06 1.54 C 

0.50 2.81 95.90 33.40 0.03 1.19 A 
1.70 7.80 55.00 22.10 0.12 1.77 C 
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In Table I, color indicates the color measurement value in the oil, water indicates the moisture 

measurement value in the transformer insulation, BDV indicates the presence of electrically conductive 

contaminants in the oil, IFT indicates the oil surface tension measurement value, acidity indicates the 

measurement value of the acid component in the oil, and OQF (Oil Quality Factor) is an oil quality value 

which is then transformed into an A to D scale as a Rating. The workflow for applying a genetic 

algorithm to determine the weight factor for power transformer oil quality is shown in Figure 1. 

The implementation of the genetic algorithm in this research follows a systematic workflow, as shown 

in Figure 1. The process begins by loading historical data obtained from oil test results conducted on 

power transformers. This data serves as the input for the genetic algorithm, providing information on 

various parameters such as color, water content, breakdown voltage (BDV), interfacial tension (IFT), 

and acidity. Subsequently, genetic algorithm parameters, including the number of iterations, number of 

chromosomes, crossover rate, and mutation rate, are determined to guide the optimization process 

effectively. The genetic algorithm then proceeds to find the optimal solution through iterative stages of 

crossover, mutation, and selection. During crossover, genetic information from parent chromosomes is 

combined to generate offspring chromosomes. Mutation introduces random changes to the offspring's 

chromosomes. Selection determines which chromosomes are retained for the next generation based on 

their fitness. Through iterations of these stages, the genetic algorithm aims to converge toward the 

optimal solution for determining the weight of the oil quality index parameters. Following this 

optimization process, the results are evaluated comprehensively. This evaluation encompasses 

functional tests to ensure the effectiveness of the proposed solution, genetic algorithm parameter tests 

to validate the selected parameter settings, and error tests to assess the accuracy and reliability of the 

results obtained. 

A. Data Preprocessing 

Table 2 describes the data transformation results using scoring interval values ranging from 1 to 4 at 

the data preprocessing stage, with reference to Oil Quality Factor Scoring in Table 3 [18]. The value of 

each parameter obtained from observations of the power transformer in Table 1 is converted into a scale 

 
Figure 1. Genetic algorithm implementation workflow 
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form, as shown in Table 2. For example, the first row of data in the color parameter is 0.50, so the scale 

conversion becomes 1. 

B. Encoding Scheme 

The encoding scheme in this research employs a chromosome representation to describe each 

individual in the genetic algorithm population. The type of chromosome representation influences the 

genetic operators used and the organization of the problem within the genetic algorithm [16]. This study 

utilizes a real-coded chromosome representation, where each gene in the chromosome encodes the 

weight of an oil quality index parameter in real numbers. Accordingly, each chromosome comprises 

five real numbers, corresponding to the weights of the five parameters under investigation. Table 4 

presents an example of a population with four chromosomes, each representing an alternative solution 

to the optimization problem. 

Table 4 displays the weights for the color, water, BDV, IFT, and acidity parameters in Gene 1 through 

Gene 5. Early on, the respective values are determined randomly and will continue to be refined to a 

better solution as the algorithm progresses. 

C. Fitness Function 

A fitness function, an objective function with a different value for each problem, serves as the primary 

mechanism for assessing the status of each chromosome [19]. The weight solution for each parameter 

for each chromosome must be applied to the 504 data used in this study using (1) to calculate the Health 

Index value before computing the fitness value. Equation (2) illustrates how the estimated Health Index 

value is compared to the target value to determine the fitness value. 

𝐻𝐼 = ∑ ∑ 𝑤𝑗 × 𝑂𝑄𝐹𝑖𝑗

𝑝

𝑗=1

𝑛

𝑖=1

 (1) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

|𝐻𝐼 − 𝑡𝑎𝑟𝑔𝑒𝑡 𝐻𝐼|
 (2) 

In (1) and (2), the Health Index is represented by HI, the weight of each parameter generated by each 

TABLE 2 

DATA PREPROCESSING RESULTS 

Color Score Water Score BDV Score IFT Score Acidity Score 

1 1 1 1 1 

1 1 1 2 1 

2 1 1 2 3 
1 1 1 2 1 

2 1 1 2 1 

2 1 1 2 1 
1 1 3 2 1 

3 1 1 2 1 

1 1 1 2 1 
2 1 1 3 2 

TABLE 3 

OIL QUALITY FACTOR SCORING 

Parameters 
Score 

1 2 3 4 

Color <1.5 1.5-2 2-2.5 >2.5 

Water (ppm) <20 20-25 25-30 >30 
Breakdown voltage (BDV) >50 50-45 45-40 <40 

Interfacial tension (dyne/cm) >35 35-25 25-20 <20 

Acidity (MgKOH/mg) <0.1 0.1-0.15 0.15-0.2 >0.2 

TABLE 4 
CHROMOSOME REPRESENTATION IN A POPULATION 

Chromosome Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

1 0.14 0.56 0.57 0.21 0.42 

2 0.72 0.78 0.36 0.35 0.98 

3 0.35 0.46 0.12 0.23 0.34 
4 0.78 0.58 0.12 0.35 0.36 

 



Jurnal ELTIKOM:  
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 
 

38 

particle is represented by w, the number of parameters is represented by p (p = 5), the amount of data is 

represented by n (n = 504), and the OQF displays the outcomes of converting the data into scores. 

D. Crossover 

The goal of the crossover is to create an offspring from two chosen chromosomes by combining the 

genes from the two chromosomes. The crossover mechanism begins by choosing two parent 

chromosomes randomly from the population [20]. The crossover method chosen depends on the type of 

chromosome representation employed. This research uses the heuristic crossover method by utilizing 

the random value β with a value range between 0 and 1. Equation (3) is used to produce one offspring 

using a heuristic crossover involving two selected parent chromosomes [21]. 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {𝛽1(𝑝𝑚1 − 𝑝𝑑1) + 𝑝𝑚1, ⋯ , 𝛽𝑛(𝑝𝑚𝑛 − 𝑝𝑑𝑛) + 𝑝𝑚𝑛 (3) 

In (3), the first gene value for parent-1 is represented by the pm1 and the first gene value for parent-2 

is represented by the pd1. An illustration of the crossover process using the heuristic crossover is shown 

in Table 5. 

Table 5 shows that the combination of two parent chromosomes produces several new gene values on 

the offspring chromosome. The tendency for gene values to approach parent-1 or parent-2 is influenced 

by the random value β. 

E. Mutation 

One or more genes on a chromosome are replaced during the mutation process. To prevent early 

convergence of the search results, this replacement aims to increase chromosome variation in the 

population. This research uses the uniform mutation method. The gene replacement value used is a 

random number generated using a normal distribution with an average value equal to 0 [22]. The uniform 

mutation process is carried out using (4) [23][21]. 

𝑥𝑛 = 𝑝𝑛 + 𝑟(𝑚𝑎𝑥𝑛 − 𝑚𝑖𝑛𝑛) (4) 

In (4), the value of the parent gene at position n is represented by pn, the upper and lower bounds of 

the gene value at position n are represented by maxn and minn, respectively, and r is a random value 

selected from the range -0.1 to 0.1. An illustration of the mutation process using the uniform mutation 

is shown in Table 6. 

In the real-coded chromosome representation, the mutation process changes all the gene values of the 

selected parent chromosome when forming the offspring chromosome. However, in this case, the gene 

change is only affected by one parent in contrast to crossover, which involves two parents. 

F. Selection 

Several chromosomes are chosen from a population to be parents in the following generation. This 

process is known as selection. Compared with crossover or mutation, the selection method is not 

influenced by the type of chromosome representation [24]. This research uses the elitism selection 

method, which is the most widely used method. Chromosomes with high fitness values are maintained 

TABLE 5 

CROSSOVER RESULT 

Chromosome Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Parent-1 0.14 0.56 0.57 0.21 0.42 

Parent-2 0.72 0.78 0.36 0.35 0.98 
β 0.34 0.67 0.33 0.73 0.65 

Offspring 0.33 0.70 0.49 0.30 0.78 

TABLE 6 

MUTATION RESULT 

Chromosome Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Parent-4 0.78 0.58 0.12 0.35 0.36 

min 0 0 0 0 0 
max 1 1 1 1 1 

r -0.01 0.03 0.05 -0.02 0.09 
Offspring 0.77 0.61 0.17 0.33 0.45 
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using this method to ensure their survival for each generation. All chromosomes must first be arranged 

from the highest fitness value to the lowest (descending) to perform selection using the elitism method. 

Chromosomes at the top of the population size will survive and be able to pass on to the following 

generation once all the chromosomes have been sorted. 

III. RESULT AND DISCUSSION 

To determine the performance of the genetic algorithm in parameter weighting, there are three types 

of genetic algorithm parameter testing carried out, consisting of the number of iterations test, the number 

of chromosomes (population size) test, and a combination of crossover rate (cr) and mutation rate (mr) 

test. Each type of test has several test scenarios with different test parameter values. 

A. The Number of Iterations Test 

In the number of iterations test, the genetic algorithm searches for a solution in 200 iterations with a 

static population size of 30 [25]. The experiment is carried out five times to get the average value. Table 

7 and Figure 2 display the test results. 

Analysis of the test results for the number of iterations showed a continuous increase in the fitness 

value graph from the first iteration. However, the graph stabilized after iteration 132, showing no further 

improvement in fitness values in subsequent iterations. This finding indicates that 132 iterations are 

optimal for efficiently generating a solution with a high fitness value. 

B. The Number of Chromosomes Test 

Tests of the number of chromosomes (population size) were conducted with 132 iterations, the optimal 

iteration value. Several test scenarios were run five times to obtain an average fitness value. Table 8 and 

Figure 3 display the test results. 

The population size test results show that the fitness value graph has increased since the population 

size was 10. The graph, however, tends to stabilize at population sizes greater than 180, and fitness 

values do not increase further at subsequent population sizes. Therefore, the ideal population size for 

producing solutions with high fitness values is 180. 

TABLE 7 

TEST RESULTS FOR THE NUMBER OF ITERATIONS 

Number of 

Iterations 

Trial Number Average Fitness 

Values 1 2 3 4 5 

1 0.245 0.495 0.239 0.318 0.146 0.288 
2 0.504 0.583 0.539 0.318 0.301 0.448 

3 0.504 0.583 0.539 0.454 0.301 0.476 

4 0.504 0.584 0.539 0.525 0.508 0.532 
5 0.628 1.313 0.539 0.539 0.514 0.706 

6 0.628 1.313 0.811 0.539 0.713 0.801 

7 0.628 1.313 0.811 0.593 0.713 0.812 
8 0.628 1.968 0.886 1.657 0.713 1.171 

9 1.846 1.968 0.886 1.657 0.713 1.171 

10 1.846 3.173 0.962 1.657 0.713 1.626 
… … … … … … … 

200 3.871 3.520 4.501 5.604 7.710 5.041 

 

 
Figure 2. Number of iterations test graph 
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C. A Combination of Crossover Rate and Mutation Rate Test 

The goal of crossover rate and mutation rate testing is to determine how many crossover and mutation 

processes must be completed in tandem to obtain the optimal solution with a high fitness value. The 

combination parameters for this test were crossover rate 0.1, mutation rate 0.9, and so forth, under the 

requirement that the total crossover rate and mutation rate be 1. Every scenario was put to the test five 

times, and Table 9 and Figure 4 display the test results. 

Crossover and mutation rate affect the number of offspring produced during reproduction. The more 

offspring there are, the more alternative solutions are found, opening the opportunity to find the best 

solution, but the time required for the reproduction process becomes longer. The results show that the 

best fitness value is obtained when the crossover rate is 0.2 and the mutation rate is 0.8, which indicates 

that these two values are the optimal combination. 

D. Error Value Test 

The error value test is used to measure the quality of the genetic algorithm in determining the weight 

of the oil quality index parameters. In this test, the genetic algorithm parameter settings used come from 

the test results that have been carried out, including the number of iterations 132, population size 180, 

crossover rate 0.2, and mutation rate 0.8. Trials were carried out on 504 data to find five parameter 

TABLE 8 
TEST RESULTS FOR THE POPULATION SIZE 

Population 

Size 

Trial Number Average Fit-

ness Values 1 2 3 4 5 

10 5.422 3.267 3.943 0.627 3.122 2.333 

20 1.511 2.753 5.550 6.905 5.396 3.213 
30 3.961 3.086 4.337 3.081 6.308 3.305 

40 5.642 2.517 4.010 6.957 4.867 3.690 

50 4.423 2.691 16.021 6.645 3.279 5.952 
60 12.909 5.613 7.342 3.364 5.858 6.122 

70 13.206 8.213 6.448 6.263 4.766 6.951 

80 5.920 18.072 8.175 4.681 5.010 7.012 
… … … … … … … 

200 18.704 7.787 16.308 15.122 13.484 11.934 

TABLE 9 

COMBINATION OF CROSSOVER RATE AND MUTATION RATE TEST RESULTS 

Crossover 

Rate 

Mutation 

Rate 

Trial Number Average Fitness 

Values 1 2 3 4 5 

0.1 0.9 16.107 19.937 22.569 6.938 12.453 8.022 
0.2 0.8 11.683 13.158 21.188 23.066 22.653 12.404 

0.3 0.7 7.721 12.869 6.861 12.183 16.149 9.276 

0.4 0.6 18.945 11.239 20.316 7.352 12.330 11.263 
0.5 0.5 6.173 15.184 11.714 14.637 20.452 11.820 

0.6 0.4 10.925 17.113 24.856 6.869 10.848 12.149 

0.7 0.3 4.151 6.031 7.039 15.682 10.854 7.838 
0.8 0.2 9.621 6.419 9.788 10.380 8.490 8.108 

0.9 0.1 7.390 4.926 3.301 2.779 8.689 5.006 

 

 
Figure 3. Population size test graph 
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weights for the oil quality index, each with ten trials. The error value is calculated using the Mean 

Absolute Percentage Error (MAPE) evaluation metric. Table 10 shows the results of the error value test. 

Table 10 shows that, out of ten experiments, the average MAPE was 1,799%, and every experiment 

produced a MAPE of less than 10%, indicating that the results are highly accurate [26][27]. This implies 

that the genetic algorithm was successfully applied to determine the weight of the oil quality index 

parameters. Meanwhile, the lowest error value was obtained in experiment 6 with a MAPE of 0.928%, 

which means that the five weighted parameters that have been determined can be applied to measure the 

transformer health index, with details of color 0.70, water 0.70, BDV 1.09, IFT 0.79, and acidity 0.90. 

E. Comparison Results with Previous Research 

Several approaches used in earlier research were compared with the outcomes of using genetic 

algorithms to determine the weighting factors for the oil quality index. Table 11 presents the findings 

from various approaches, which includes key results and limitations. 

Based on Table 11, the comparison between the proposed genetic algorithm method and previous 

methodologies reveals several significant insights. First, the EWHI and AHP methods rely heavily on 

subjective judgment or expert input to determine parameter weights, whereas the proposed genetic 

algorithm method eliminates the need for expert involvement, thereby reducing subjectivity. 

Additionally, a genetic algorithm provides a systematic and objective way to derive weighting factors 

for each transformer health index parameter based only on historical data. This shift toward data-based 

decision-making increases the reliability and objectivity of the index. 

Comparing the proposed genetic algorithm method with existing approaches highlights its advantages 

and limitations. In contrast to EWHI and AHP methods, which may suffer from subjectivity and 

uncertainty due to reliance on expert judgment or subjective decision-making processes, genetic 

algorithm methods offer a more transparent and reproducible way of determining parameter weights. 

However, this genetic algorithm approach requires historical data for training, which may pose 

limitations if such data is unavailable or does not adequately represent all possible scenarios. 

TABLE 10 

ERROR VALUE TEST RESULTS 

Trial 

Number 

Parameters 
MAPE (%) 

Color Water BDV IFT Acidity 

1 0.40 0.46 0.73 0.53 0.60 3.307 

2 0.60 0.63 0.99 0.73 0.81 1.820 

3 0.63 0.59 0.93 0.83 0.77 2.302 
4 0.50 0.52 0.81 0.59 0.66 1.504 

5 0.60 0.62 0.98 0.72 0.81 1.569 

6 0.70 0.70 1.09 0.79 0.90 0.928 
7 0.73 0.68 1.01 0.79 0.89 1.113 

8 0.60 0.63 0.98 0.71 0.81 1.691 

9 0.56 0.61 0.96 0.71 0.78 2.180 
10 0.60 0.62 0.98 0.72 0.80 1.570 

Average MAPE 1.799 

 

 
Figure 4. Combination of crossover rate and mutation rate test graph 
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Genetic algorithm methods have the limitation of being dependent on historical data for their training. 

Although this eliminates the need for expert judgment, the effectiveness of this method may be 

influenced by the quality and representativeness of the data. Furthermore, users who do not have 

sufficient expertise in optimizing the algorithms and tuning the parameters used may face challenges 

due to the complexity of implementing and tuning genetic algorithms. 

The findings of this comparison have several implications for transformer health assessment and 

decision-making processes. By demonstrating the feasibility and advantages of the genetic algorithm 

approach, this research highlights the potential for transitioning towards more data-driven and objective 

methodologies in transformer health management. This shift can enhance the accuracy and reliability of 

transformer health assessments, leading to improved maintenance strategies and a reduced risk of 

unexpected failures. Furthermore, the elimination of expert involvement in parameter weighting can 

streamline the decision-making process and reduce reliance on subjective assessments, thereby 

increasing efficiency and consistency in transformer health management practices. 

IV. CONCLUSION 

With optimal parameter settings of the number of iterations 132, population size 180, crossover rate 

0.2, and mutation rate 0.8, the genetic algorithm was successfully used to determine the weight of the 

oil quality index parameters. The optimal outcome of the genetic algorithm employed to determine the 

weight of the oil quality index parameters was a MAPE value of 1.799%, which resulted in a color 

weight of 0.70, a water weight of 0.70, a BDV weight of 1.09, an IFT weight of 0.79, and an acidity 

weight of 0.90. This low MAPE indicates that the results provided are highly accurate so that the 

parameter weights that have been obtained can be used in measuring the transformer health index. In 

addition, this research excels in the parameter weighting method without direct involvement of experts. 

Despite the limitations of historical data, this autonomous approach provides an innovative and efficient 

solution in parameter weighting methods. 

In future research, the exploration of real-time data integration can be improved by developing 

algorithms and systems that can effortlessly integrate streaming data from various sensors and 

monitoring devices installed on power transformers into a genetic algorithm framework. This integration 

would enable the dynamic adjustment of parameter weights in real-time based on current operational 

conditions, enhancing the adaptability and predictive capabilities of the transformer health index. 

Moreover, a deeper exploration of multi-objective optimization using a genetic algorithm framework is 

possible. This could involve developing new optimization techniques that can optimize multiple 

objectives in transformer health assessment, such as reliability, efficiency, and cost-effectiveness. By 

considering diverse stakeholder objectives and constraints, this approach can offer a more 

comprehensive and holistic approach to transformer health management and decision-making, 

ultimately leading to improved reliability and efficiency in power systems. 

TABLE 11 

COMPARISON RESULTS 

Methods Results Limitations 

EWHI [8] The entropy weight health index of the power transformer is obtained 

from the entropy weight and the entropy of each parameter. 

This method presents subjective judgment 

in the weight determination process 

EW and 

VIKOR [10] 

The entropy weight is used to calculate the weight of each parameter, and 

then the selection of the best scheme is carried out using the VIKOR 

method for decision-making. 

The product design idea development 

process is subjective and uncertain. 

AHP [11] The AHP model can present parameter weights for individuals and 

groups using seven comparisons (group form) compared to thirteen 

paired questionnaires (individual form) when determining parameter 

weights for creating a water quality index. 

This method requires several respondents 

from stakeholders to obtain independent 

assessments. 

AHP [12] This method provides weight factors for the transformer health index 

based on a hierarchy of importance levels for each parameter. 

This method requires expert judgment, 

statistics, or other considerations for 

pairwise comparison assessments in the 

AHP stage. 

Genetic 

algorithm 

(Proposed) 

Without the involvement of experts, this method produces a transformer 

health index weighting factor for each parameter 

This method requires historical data which 

is used as training data to find the right 

weights. 
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