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ABSTRACT

Power transformers are critical to electrical power systems but are prone to failures due to factors such as heat,
electricity, chemical reactions, mechanical stress, and adverse environmental conditions. Monitoring the insulat-
ing oil effectively is key to preventing these failures. A major challenge in this process is determining the optimal
weights for the oil quality index, which lacks a standardized benchmark and often relies on subjective expert
assessments. To reduce expert bias and subjectivity, this research utilizes a genetic algorithm to optimize the
weightings for five essential parameters: color, water content, breakdown voltage (BDV), interfacial tension (IFT),
and acidity. The algorithm operates through three stages: crossover, mutation, and selection, and analyzes data
from 504 oil tests across various transformers. The mean absolute percentage error (MAPE) is used as the fitness
value to assess the algorithm's effectiveness. The optimization process determined the best conditions as 132 iter-
ations, a population size of 180, a crossover rate of 0.2, and a mutation rate of 0.8. These parameters achieved an
average MAPE of 1.799% over ten trials, indicating high accuracy. This research not only optimizes the weighting
of the oil quality index but also significantly reduces the need for expert input and subjective judgments in trans-
former maintenance. The findings are expected to improve the efficiency and reliability of power transformers,
thereby minimizing failures and associated economic costs.

Keywords: : electricity, insulating oil, optimization, power system.

. INTRODUCTION

TRANSFORMERS are essential components of electrical power equipment. Transformer lifespans
typically exceed 40 years. On the other hand, an unfavorable combination of heat, electricity,
chemistry, mechanics, and the environment can occasionally cause power transformer failure to
occur more quickly. A number of factors, including faults, oil quality, and paper condition, can lead to
transformer insulation failure. These factors may shorten the transformer's service life, which could
result in malfunctions and explosions while the transformer is in use [1], [2]. Thus, a transformer
assessment is necessary to prevent unexpected transformer failure [3].

Oil is needed in various technologies due to recent technological advancements, particularly in power
transformers. Power transformers use oil as a heat-transfer medium and for insulation. In order to lower
the chance of a power transformer failure, oil insulation needs to be monitored [4], [5]. A suitable
designed weighting mechanism is essential to obtaining a high oil quality index and preventing power
transformer failure. The color, dissipation factor, kinematic viscosity (cSt), acidity, dielectric strength
(kV), and water content (ppm) are the six factors that determine the oil quality index. Inadequate oil
quality can lead to the release of dissolved gases, which can impact the transformer's chemical
composition and electrical and thermal conditions [6].

No suitable benchmark value can be used as a reference to obtain the correct results or parameter
weighting values. Expert judgment determines how each weighting factor should be applied. Because
no standards have been established or followed, weighting is therefore extremely difficult to perform
and is instead based on the expert's subjective judgments or weights taken from earlier research [7]. A
weighting mechanism using artificial intelligence needs to be implemented to overcome this problem.

Entropy Weight Health Index (EWHI) method is one of the weighting techniques that past researchers
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TABLE 1
DATA SAMPLES

Color Water BDV IFT Acidity OQF Rating
0.50 759 6210 36.10 0.04 1.00
0.60 6.14 76.80 31.60 0.09 1.19
1.60 1157 66.40 28.40 0.17 1.79
0.50 816 59.20 31.50 0.09 1.19
1.60 7.56 64.50 31.80 0.02 1.36
1.70 7.73 5350 3150 0.01 1.36
0.80 12.01 4250 32.80 0.04 171
2.20 4,74 99.20 28.10 0.06 1.54
0.50 2.81 9590 33.40 0.03 1.19
1.70 7.80 55.00 22.10 0.12 1.77

O>O00WW>O>D>

have employed. In order to determine the entropy weight, the parameter entropy was used in conjunction
with the entropy weighting method, which was based on a jury matrix generated from the index values
in every case. The entropy weight increases with the parameter's importance to the evaluation. The
entropy weight method can increase the realism of evaluation results by minimizing the subjectivity of
parameter weighting [8]. It is claimed that the primary benefit of the entropy weight method over other
subjective weighting models is its ability to prevent human factors from influencing indicator weight,
which improves the comprehensive evaluation results' objectivity [9]. In other research, entropy weights
were combined with the VIKOR method to obtain alternative rankings after the entropy weight method
was applied by the decision maker [10]. However, this method of determining weights still involves
subjective evaluations.

Weight parameters can also be determined by applying decision support system techniques, such as
the Analytical Hierarchy Process (AHP), which is used extensively. Two AHP models were tested to
weight parameters in earlier research by comparing the questionnaire's individual and group form
models [11]. A hierarchy is created based on the number of parameters that determine the transformer
health index in order to apply AHP to weight parameters. Experts then perform an evaluation and
prioritize each parameter [12]. However, the requirement for extensive information from experts is a
drawback of the analytical hierarchy process [13]. There was high involvement of experts in previous
studies to determine parameter weights.

The identified research gap lies in the reliance on the subjective judgment of experts and the lack of
a completely objective method for determining the weighting factors of transformer oil quality. The
approach used in previous studies still shows subjectivity, which can be time-consuming and may
require extensive input from experts. To overcome this gap, this research proposes a more objective
approach by utilizing a genetic algorithm to determine the weighting factors for transformer oil quality.
The genetic algorithm is chosen due to its ability to handle discrete and continuous variables effectively,
provide multiple optimal solutions, and increase the accuracy of classification results [14]. It can also
work effectively with various types of optimizations, including analytical functions and numerical data
[15][16]. With these advantages, a genetic algorithm is proposed in this research to determine the
weights of a number of parameters, consisting of color, water content, breakdown voltage (BDV),
interfacial tension (IFT), acidity, and water. This research aims to develop a genetic algorithm-based
weighting method to determine the optimal weighting factors for transformer oil quality parameters.
Additionally, the effectiveness of this method in enhancing the accuracy of transformer health index
classification will be assessed. Meanwhile, this research novelty is that there is no involvement of
experts in determining the oil quality weight factors.

Il. RESEARCH METHOD

The tools and materials used in this research include the Python programming language, the Visual
Studio Code (VS Code) editor, a laptop based on an Intel Core i7 processor, and Python libraries such
as NumPy, Pandas, and SciPy. This study employs 504 data, each containing parameter values for color,
water, BDV, IFT, acidity, and water content, from 150 kV transformers [17]. The sample data used is
shown in Table 1.
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Figure 1. Genetic algorithm implementation workflow

In Table I, color indicates the color measurement value in the oil, water indicates the moisture
measurement value in the transformer insulation, BDV indicates the presence of electrically conductive
contaminants in the oil, IFT indicates the oil surface tension measurement value, acidity indicates the
measurement value of the acid component in the oil, and OQF (Oil Quality Factor) is an oil quality value
which is then transformed into an A to D scale as a Rating. The workflow for applying a genetic
algorithm to determine the weight factor for power transformer oil quality is shown in Figure 1.

The implementation of the genetic algorithm in this research follows a systematic workflow, as shown
in Figure 1. The process begins by loading historical data obtained from oil test results conducted on
power transformers. This data serves as the input for the genetic algorithm, providing information on
various parameters such as color, water content, breakdown voltage (BDV), interfacial tension (IFT),
and acidity. Subsequently, genetic algorithm parameters, including the number of iterations, number of
chromosomes, crossover rate, and mutation rate, are determined to guide the optimization process
effectively. The genetic algorithm then proceeds to find the optimal solution through iterative stages of
crossover, mutation, and selection. During crossover, genetic information from parent chromosomes is
combined to generate offspring chromosomes. Mutation introduces random changes to the offspring's
chromosomes. Selection determines which chromosomes are retained for the next generation based on
their fitness. Through iterations of these stages, the genetic algorithm aims to converge toward the
optimal solution for determining the weight of the oil quality index parameters. Following this
optimization process, the results are evaluated comprehensively. This evaluation encompasses
functional tests to ensure the effectiveness of the proposed solution, genetic algorithm parameter tests
to validate the selected parameter settings, and error tests to assess the accuracy and reliability of the
results obtained.

A. Data Preprocessing

Table 2 describes the data transformation results using scoring interval values ranging from 1 to 4 at
the data preprocessing stage, with reference to Oil Quality Factor Scoring in Table 3 [18]. The value of
each parameter obtained from observations of the power transformer in Table 1 is converted into a scale
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TABLE 2
DATA PREPROCESSING RESULTS

Color Score  Water Score  BDV Score  IFT Score  Acidity Score

1 1 1 1 1
1 1 1 2 1
2 1 1 2 3
1 1 1 2 1
2 1 1 2 1
2 1 1 2 1
1 1 3 2 1
3 1 1 2 1
1 1 1 2 1
2 1 1 3 2
TABLE 3
OIL QUALITY FACTOR SCORING
p t Score
arameters 1 > 3 7
Color <15 1.5-2 2-2.5 >2.5
Water (ppm) <20 20-25 25-30 >30

Breakdown voltage (BDV) >50 50-45 45-40 <40
Interfacial tension (dyne/cm)  >35 35-25 25-20 <20
Acidity (MgKOH/mg) <0.1 0.1-0.15 0.15-02 >0.2

TABLE 4
CHROMOSOME REPRESENTATION IN A POPULATION

Chromosome  Genel Gene2 Gene3d Gene4 Gene5

1 0.14 0.56 0.57 0.21 0.42
2 0.72 0.78 0.36 0.35 0.98
3 0.35 0.46 0.12 0.23 0.34
4 0.78 0.58 0.12 0.35 0.36

form, as shown in Table 2. For example, the first row of data in the color parameter is 0.50, so the scale
conversion becomes 1.

B. Encoding Scheme

The encoding scheme in this research employs a chromosome representation to describe each
individual in the genetic algorithm population. The type of chromosome representation influences the
genetic operators used and the organization of the problem within the genetic algorithm [16]. This study
utilizes a real-coded chromosome representation, where each gene in the chromosome encodes the
weight of an oil quality index parameter in real numbers. Accordingly, each chromosome comprises
five real numbers, corresponding to the weights of the five parameters under investigation. Table 4
presents an example of a population with four chromosomes, each representing an alternative solution
to the optimization problem.

Table 4 displays the weights for the color, water, BDV, IFT, and acidity parameters in Gene 1 through
Gene 5. Early on, the respective values are determined randomly and will continue to be refined to a
better solution as the algorithm progresses.

C. Fitness Function

A fitness function, an objective function with a different value for each problem, serves as the primary
mechanism for assessing the status of each chromosome [19]. The weight solution for each parameter
for each chromosome must be applied to the 504 data used in this study using (1) to calculate the Health
Index value before computing the fitness value. Equation (2) illustrates how the estimated Health Index
value is compared to the target value to determine the fitness value.

n b
i=1j=1
1
fitness = )
|HI — target HI| (2)

In (1) and (2), the Health Index is represented by HI, the weight of each parameter generated by each
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TABLE 5
CROSSOVER RESULT
Chromosome Genel Gene2 Gene3 Gene4 Geneb

Parent-1 0.14 0.56 0.57 0.21 0.42

Parent-2 0.72 0.78 0.36 0.35 0.98

B 0.34 0.67 0.33 0.73 0.65

Offspring 0.33 0.70 0.49 0.30 0.78
TABLE 6

MUTATION RESULT
Chromosome Genel Gene2 Gene3 Gene4 Geneb

Parent-4 0.78 0.58 0.12 0.35 0.36
min 0 0 0 0 0
max 1 1 1 1 1

r -0.01 0.03 0.05 -0.02 0.09
Offspring 0.77 0.61 0.17 0.33 0.45

particle is represented by w, the number of parameters is represented by p (p = 5), the amount of data is
represented by n (n = 504), and the OQF displays the outcomes of converting the data into scores.

D. Crossover

The goal of the crossover is to create an offspring from two chosen chromosomes by combining the
genes from the two chromosomes. The crossover mechanism begins by choosing two parent
chromosomes randomly from the population [20]. The crossover method chosen depends on the type of
chromosome representation employed. This research uses the heuristic crossover method by utilizing
the random value § with a value range between 0 and 1. Equation (3) is used to produce one offspring
using a heuristic crossover involving two selected parent chromosomes [21].

offspring = {Bl (pml - pdl) + Dm1 s .Bn(pmn - pdn) + Pmn (3)

In (3), the first gene value for parent-1 is represented by the pmi and the first gene value for parent-2
is represented by the pq1. An illustration of the crossover process using the heuristic crossover is shown
in Table 5.

Table 5 shows that the combination of two parent chromosomes produces several new gene values on
the offspring chromosome. The tendency for gene values to approach parent-1 or parent-2 is influenced
by the random value .

E. Mutation

One or more genes on a chromosome are replaced during the mutation process. To prevent early
convergence of the search results, this replacement aims to increase chromosome variation in the
population. This research uses the uniform mutation method. The gene replacement value used is a
random number generated using a normal distribution with an average value equal to 0 [22]. The uniform
mutation process is carried out using (4) [23][21].

Xp = pp + r(Mmax,, —min,) (@)

In (4), the value of the parent gene at position n is represented by pn, the upper and lower bounds of
the gene value at position n are represented by max, and min,, respectively, and r is a random value
selected from the range -0.1 to 0.1. An illustration of the mutation process using the uniform mutation
is shown in Table 6.

In the real-coded chromosome representation, the mutation process changes all the gene values of the
selected parent chromosome when forming the offspring chromosome. However, in this case, the gene
change is only affected by one parent in contrast to crossover, which involves two parents.

F. Selection

Several chromosomes are chosen from a population to be parents in the following generation. This
process is known as selection. Compared with crossover or mutation, the selection method is not
influenced by the type of chromosome representation [24]. This research uses the elitism selection
method, which is the most widely used method. Chromosomes with high fitness values are maintained
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TABLE 7
TEST RESULTS FOR THE NUMBER OF ITERATIONS
Number of Trial Number Average Fitness
Iterations 1 2 3 4 5 Values
1 0.245 0.495 0.239 0.318 0.146 0.288
2 0.504 0.583 0.539 0.318 0.301 0.448
3 0.504 0.583 0.539 0.454 0.301 0.476
4 0.504 0.584 0.539 0.525 0.508 0.532
5 0.628 1.313 0.539 0.539 0.514 0.706
6 0.628 1.313 0.811 0.539 0.713 0.801
7 0.628 1.313 0.811 0.593 0.713 0.812
8 0.628 1.968 0.886 1.657 0.713 1.171
9 1.846 1.968 0.886 1.657 0.713 1.171
10 1.846 3.173 0.962 1.657 0.713 1.626
200 3.871 3.520 4.501 5.604 7.710 5.041
5,50
5,00
4,50 ,
© 4,00
= 3,50
3 3,00
¢ 2,50
£ 2,00
L 1,50
1,00
0,50
0,00
T O~ M AO0ONLM A~ M AN M AdO N~ M
HNeSYSThoreeegdNNnI NS

Number of Iterations
Figure 2. Number of iterations test graph

using this method to ensure their survival for each generation. All chromosomes must first be arranged
from the highest fitness value to the lowest (descending) to perform selection using the elitism method.
Chromosomes at the top of the population size will survive and be able to pass on to the following
generation once all the chromosomes have been sorted.

I11. RESULT AND DISCUSSION

To determine the performance of the genetic algorithm in parameter weighting, there are three types
of genetic algorithm parameter testing carried out, consisting of the number of iterations test, the number
of chromosomes (population size) test, and a combination of crossover rate (cr) and mutation rate (mr)
test. Each type of test has several test scenarios with different test parameter values.

A. The Number of Iterations Test

In the number of iterations test, the genetic algorithm searches for a solution in 200 iterations with a
static population size of 30 [25]. The experiment is carried out five times to get the average value. Table
7 and Figure 2 display the test results.

Analysis of the test results for the number of iterations showed a continuous increase in the fitness
value graph from the first iteration. However, the graph stabilized after iteration 132, showing no further
improvement in fitness values in subsequent iterations. This finding indicates that 132 iterations are
optimal for efficiently generating a solution with a high fitness value.

B. The Number of Chromosomes Test

Tests of the number of chromosomes (population size) were conducted with 132 iterations, the optimal
iteration value. Several test scenarios were run five times to obtain an average fitness value. Table 8 and
Figure 3 display the test results.

The population size test results show that the fitness value graph has increased since the population
size was 10. The graph, however, tends to stabilize at population sizes greater than 180, and fitness
values do not increase further at subsequent population sizes. Therefore, the ideal population size for
producing solutions with high fitness values is 180.

39



Jurnal ELTIKOM:
Jurnal Teknik Elektro, Teknologi Informasi dan Komputer

TABLE 8
TEST RESULTS FOR THE POPULATION SIZE
Population Trial Number Average Fit-
Size 1 2 3 4 5 ness Values
10 5.422 3.267 3.943 0.627 3.122 2.333
20 1511 2.753 5.550 6.905 5.396 3.213
30 3.961 3.086 4.337 3.081 6.308 3.305
40 5.642 2.517 4.010 6.957 4.867 3.690
50 4.423 2.691 16.021 6.645 3.279 5.952
60 12.909 5.613 7.342 3.364 5.858 6.122
70 13.206 8.213 6.448 6.263 4.766 6.951
80 5.920 18.072 8.175 4.681 5.010 7.012
200 18.704 7.787 16.308 15.122 13.484 11.934
TABLE 9
COMBINATION OF CROSSOVER RATE AND MUTATION RATE TEST RESULTS
Crossover Mutation Trial Number Average Fitness
Rate Rate 1 2 3 4 5 Values
0.1 0.9 16.107 19.937 22.569 6.938 12.453 8.022
0.2 0.8 11.683 13.158 21.188 23.066 22.653 12.404
0.3 0.7 7.721 12.869 6.861 12.183 16.149 9.276
0.4 0.6 18.945 11.239 20.316 7.352 12.330 11.263
0.5 0.5 6.173 15.184 11.714 14.637 20.452 11.820
0.6 0.4 10.925 17.113 24.856 6.869 10.848 12.149
0.7 0.3 4.151 6.031 7.039 15.682 10.854 7.838
0.8 0.2 9.621 6.419 9.788 10.380 8.490 8.108
0.9 0.1 7.390 4.926 3.301 2.779 8.689 5.006
14
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o 10
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Figure 3. Population size test graph

C. A Combination of Crossover Rate and Mutation Rate Test

The goal of crossover rate and mutation rate testing is to determine how many crossover and mutation
processes must be completed in tandem to obtain the optimal solution with a high fitness value. The
combination parameters for this test were crossover rate 0.1, mutation rate 0.9, and so forth, under the
requirement that the total crossover rate and mutation rate be 1. Every scenario was put to the test five
times, and Table 9 and Figure 4 display the test results.

Crossover and mutation rate affect the number of offspring produced during reproduction. The more
offspring there are, the more alternative solutions are found, opening the opportunity to find the best
solution, but the time required for the reproduction process becomes longer. The results show that the
best fitness value is obtained when the crossover rate is 0.2 and the mutation rate is 0.8, which indicates
that these two values are the optimal combination.

D. Error Value Test

The error value test is used to measure the quality of the genetic algorithm in determining the weight
of the oil quality index parameters. In this test, the genetic algorithm parameter settings used come from
the test results that have been carried out, including the number of iterations 132, population size 180,
crossover rate 0.2, and mutation rate 0.8. Trials were carried out on 504 data to find five parameter
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TABLE 10
ERROR VALUE TEST RESULTS
Trial Parameters o
Number Color Water BDV IFT Acidity MAPE (%)
1 0.40 0.46 0.73 0.53 0.60 3.307
2 0.60 0.63 0.99 0.73 0.81 1.820
3 0.63 0.59 0.93 0.83 0.77 2.302
4 0.50 0.52 0.81 0.59 0.66 1.504
5 0.60 0.62 0.98 0.72 0.81 1.569
6 0.70 0.70 1.09 0.79 0.90 0.928
7 0.73 0.68 1.01 0.79 0.89 1.113
8 0.60 0.63 0.98 0.71 0.81 1.691
9 0.56 0.61 0.96 0.71 0.78 2.180
10 0.60 0.62 0.98 0.72 0.80 1.570
Average MAPE 1.799
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Figure 4. Combination of crossover rate and mutation rate test graph

weights for the oil quality index, each with ten trials. The error value is calculated using the Mean
Absolute Percentage Error (MAPE) evaluation metric. Table 10 shows the results of the error value test.
Table 10 shows that, out of ten experiments, the average MAPE was 1,799%, and every experiment
produced a MAPE of less than 10%, indicating that the results are highly accurate [26][27]. This implies
that the genetic algorithm was successfully applied to determine the weight of the oil quality index
parameters. Meanwhile, the lowest error value was obtained in experiment 6 with a MAPE of 0.928%,
which means that the five weighted parameters that have been determined can be applied to measure the
transformer health index, with details of color 0.70, water 0.70, BDV 1.09, IFT 0.79, and acidity 0.90.

E. Comparison Results with Previous Research

Several approaches used in earlier research were compared with the outcomes of using genetic
algorithms to determine the weighting factors for the oil quality index. Table 11 presents the findings
from various approaches, which includes key results and limitations.

Based on Table 11, the comparison between the proposed genetic algorithm method and previous
methodologies reveals several significant insights. First, the EWHI and AHP methods rely heavily on
subjective judgment or expert input to determine parameter weights, whereas the proposed genetic
algorithm method eliminates the need for expert involvement, thereby reducing subjectivity.
Additionally, a genetic algorithm provides a systematic and objective way to derive weighting factors
for each transformer health index parameter based only on historical data. This shift toward data-based
decision-making increases the reliability and objectivity of the index.

Comparing the proposed genetic algorithm method with existing approaches highlights its advantages
and limitations. In contrast to EWHI and AHP methods, which may suffer from subjectivity and
uncertainty due to reliance on expert judgment or subjective decision-making processes, genetic
algorithm methods offer a more transparent and reproducible way of determining parameter weights.
However, this genetic algorithm approach requires historical data for training, which may pose
limitations if such data is unavailable or does not adequately represent all possible scenarios.
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TABLE 11
COMPARISON RESULTS
Methods Results Limitations

EWHI [8] The entropy weight health index of the power transformer is obtained  This method presents subjective judgment
from the entropy weight and the entropy of each parameter. in the weight determination process

EW and  The entropy weight is used to calculate the weight of each parameter,and  The product design idea development

VIKOR [10] then the selection of the best scheme is carried out using the VIKOR  process is subjective and uncertain.
method for decision-making.

AHP [11] The AHP model can present parameter weights for individuals and  This method requires several respondents
groups using seven comparisons (group form) compared to thirteen from stakeholders to obtain independent
paired questionnaires (individual form) when determining parameter assessments.
weights for creating a water quality index.

AHP [12] This method provides weight factors for the transformer health index  This method requires expert judgment,
based on a hierarchy of importance levels for each parameter. statistics, or other considerations for

pairwise comparison assessments in the
AHP stage.

Genetic Without the involvement of experts, this method produces a transformer ~ This method requires historical data which

algorithm health index weighting factor for each parameter is used as training data to find the right

(Proposed) weights.

Genetic algorithm methods have the limitation of being dependent on historical data for their training.
Although this eliminates the need for expert judgment, the effectiveness of this method may be
influenced by the quality and representativeness of the data. Furthermore, users who do not have
sufficient expertise in optimizing the algorithms and tuning the parameters used may face challenges
due to the complexity of implementing and tuning genetic algorithms.

The findings of this comparison have several implications for transformer health assessment and
decision-making processes. By demonstrating the feasibility and advantages of the genetic algorithm
approach, this research highlights the potential for transitioning towards more data-driven and objective
methodologies in transformer health management. This shift can enhance the accuracy and reliability of
transformer health assessments, leading to improved maintenance strategies and a reduced risk of
unexpected failures. Furthermore, the elimination of expert involvement in parameter weighting can
streamline the decision-making process and reduce reliance on subjective assessments, thereby
increasing efficiency and consistency in transformer health management practices.

IV. CONCLUSION

With optimal parameter settings of the number of iterations 132, population size 180, crossover rate
0.2, and mutation rate 0.8, the genetic algorithm was successfully used to determine the weight of the
oil quality index parameters. The optimal outcome of the genetic algorithm employed to determine the
weight of the oil quality index parameters was a MAPE value of 1.799%, which resulted in a color
weight of 0.70, a water weight of 0.70, a BDV weight of 1.09, an IFT weight of 0.79, and an acidity
weight of 0.90. This low MAPE indicates that the results provided are highly accurate so that the
parameter weights that have been obtained can be used in measuring the transformer health index. In
addition, this research excels in the parameter weighting method without direct involvement of experts.
Despite the limitations of historical data, this autonomous approach provides an innovative and efficient
solution in parameter weighting methods.

In future research, the exploration of real-time data integration can be improved by developing
algorithms and systems that can effortlessly integrate streaming data from various sensors and
monitoring devices installed on power transformers into a genetic algorithm framework. This integration
would enable the dynamic adjustment of parameter weights in real-time based on current operational
conditions, enhancing the adaptability and predictive capabilities of the transformer health index.
Moreover, a deeper exploration of multi-objective optimization using a genetic algorithm framework is
possible. This could involve developing new optimization techniques that can optimize multiple
objectives in transformer health assessment, such as reliability, efficiency, and cost-effectiveness. By
considering diverse stakeholder objectives and constraints, this approach can offer a more
comprehensive and holistic approach to transformer health management and decision-making,
ultimately leading to improved reliability and efficiency in power systems.
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